Aims and Scope of the Special Issue, “Quantum Foundations: Informational Perspective”

[1]  G. D’Ariano,et al.  Quantum Walks, Weyl Equation and the Lorentz Group , 2017, 1707.08455.

[2]  Blake C. Stacey,et al.  Introducing the Qplex: a novel arena for quantum theory , 2016, 1612.03234.

[3]  A. Plotnitsky On the Character of Quantum Law: Complementarity, Entanglement, and Information , 2017 .

[4]  Andrei Khrennikov,et al.  The Present Situation in Quantum Theory and its Merging with General Relativity , 2017, 1704.04679.

[5]  Blake C. Stacey Von Neumann was not a Quantum Bayesian , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Elena R. Loubenets Bell’s Nonlocality in a General Nonsignaling Case: Quantitatively and Conceptually , 2016, 1612.06064.

[7]  Shayne Waldron,et al.  Constructing exact symmetric informationally complete measurements from numerical solutions , 2017, 1703.05981.

[8]  Blake C. Stacey Sporadic SICs and the Normed Division Algebras , 2016 .

[9]  Blake C. Stacey SIC-POVMs and Compatibility among Quantum States , 2016 .

[10]  Christopher A. Fuchs,et al.  The SIC Question: History and State of Play , 2017, Axioms.

[11]  David Marcus Appleby,et al.  Exploring the geometry of qutrit state space using symmetric informationally complete probabilities , 2013, 1304.8075.

[12]  A. J. Scott,et al.  Symmetric informationally complete positive-operator-valued measures: A new computer study , 2010 .

[13]  N. David Mermin,et al.  An introduction to QBism with an application to the locality of quantum mechanics , 2013, 1311.5253.

[14]  Andrei Khrennikov,et al.  Preface of the Special Issue Quantum Foundations: Theory and Experiment , 2012 .

[15]  B. Coecke,et al.  Preface of the special issue on quantum theory : From foundations to technologies , 2016 .

[16]  Joseph M. Renes,et al.  Symmetric informationally complete quantum measurements , 2003, quant-ph/0310075.

[17]  G. D’Ariano,et al.  Preface of the special issue quantum foundations: information approach , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  Ingemar Bengtsson,et al.  The Number Behind the Simplest SIC–POVM , 2016, Foundations of Physics.

[19]  Andrei Khrennikov Quantum theory: Reconsideration of foundations , 2003 .

[20]  Huangjun Zhu,et al.  Quasiprobability Representations of Quantum Mechanics with Minimal Negativity. , 2016, Physical review letters.

[21]  Christopher A. Fuchs,et al.  Notwithstanding Bohr, the Reasons for QBism , 2017, 1705.03483.

[22]  Andrei Khrennikov,et al.  Preface of the Special Issue Probing the Limits of Quantum Mechanics: Theory and Experiment, Volume 2 , 2020 .

[23]  Marcus Appleby,et al.  Generating ray class fields of real quadratic fields via complex equiangular lines , 2016, Acta Arithmetica.

[24]  Marcus Appleby,et al.  SICs and Algebraic Number Theory , 2017, 1701.05200.

[25]  C. Fuchs,et al.  Negativity Bounds for Weyl–Heisenberg Quasiprobability Representations , 2017, Foundations of Physics.

[26]  A. J. Scott SICs: Extending the list of solutions , 2017 .

[27]  G. Zauner,et al.  QUANTUM DESIGNS: FOUNDATIONS OF A NONCOMMUTATIVE DESIGN THEORY , 2011 .