Towards a more realistic population of bright spiral galaxies in cosmological simulations

We present an update to the multiphase SPH galaxy formation code by Scannapieco et al. We include a more elaborate treatment of the production of metals, cooling rates based on individual element abundances, and a scheme for the turbulent diffusion of metals. Our SN feedback model now transfers energy to the ISM in kinetic and thermal form, and we include a prescription for the effects of radiation pressure from massive young stars on the ISM. We calibrate our new code on the well studied Aquarius haloes and then use it to simulate a sample of 16 galaxies with halo masses between 1 × 10 11 and 3 × 10 12 M⊙. In general, the stellar masses of the sample agree well with the stellar mass to halo mass relation inferred from abundance matching techniques for redshifts z = 0 4. There is however a tendency to overproduce stars at z > 4 and to underproduce them at z < 0.5 in the least massive haloes. Overly high SFRs at z < 1 for the most massive haloes are likely connected to the lack of AGN feedback in our model. The simulated sample also shows reasonable agreement with observed star formation rates, sizes, gas fractions and gas-phase metallicities at z = 0 3. Remaining discrepancies can be connected to deviations from predictions for star formation histories from abundance matching. At z = 0, the model galaxies show realistic morphologies, stellar surface density profiles, circular velocity curves and stellar metallicities, but overly flat metallicity gradients. 15 out of 16 of our galaxies contain disk components with kinematic disk fraction ranging between 15 and 65 %. The disk fraction depends on the time of the last destructive merger or misaligned infall event. Considering the remaining shortcomings of our simulations we conclude

[1]  K. Sellgren,et al.  The Frequency of Barred Spiral Galaxies in the Near-Infrared , 1999, astro-ph/9910479.

[2]  J. Schaye,et al.  The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation , 2011, 1112.0315.

[3]  Chien Y. Peng,et al.  GEMS: The Surface Brightness and Surface Mass Density Evolution of Disk Galaxies , 2005 .

[4]  E. Quataert,et al.  On the Maximum Luminosity of Galaxies and Their Central Black Holes: Feedback from Momentum-driven Winds , 2004, astro-ph/0406070.

[5]  R. Klessen,et al.  Chemical mixing in smoothed particle hydrodynamics simulations , 2008, 0808.0843.

[6]  G. Stinson,et al.  The enrichment of the intergalactic medium with adiabatic feedback – I. Metal cooling and metal diffusion , 2009, 0910.5956.

[7]  GEMS: The Size Evolution of Disk Galaxies , 2005, astro-ph/0502416.

[8]  B. Gibson,et al.  Constraining sub-grid physics with high-redshift spatially-resolved metallicity distributions , 2013, 1304.3020.

[9]  Explosive Yields of Massive Stars from Z = 0 to Z = Z? , 2004, astro-ph/0402625.

[10]  C. Firmani,et al.  ON THE BARYONIC, STELLAR, AND LUMINOUS SCALING RELATIONS OF DISK GALAXIES , 2008, 0807.0636.

[11]  V. Springel,et al.  Cosmological smoothed particle hydrodynamics simulations: the entropy equation , 2001, astro-ph/0111016.

[12]  R. Davé,et al.  Galaxy gas fractions at high redshift: the tension between observations and cosmological simulations , 2012, 1209.0771.

[13]  Iap,et al.  The ages and metallicities of galaxies in the local universe , 2005, astro-ph/0506539.

[14]  S. White,et al.  What is the (dark) matter with dwarf galaxies , 2010, 1003.0671.

[15]  C. Steidel,et al.  THE MASS–RADIUS RELATION FOR STAR-FORMING GALAXIES AT z ∼ 1.5–3.0 , 2011, 1105.3954.

[16]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[17]  J. Binney,et al.  Kinematics and history of the solar neighbourhood revisited , 2009, 0905.2512.

[18]  Cfa,et al.  An observer's view of simulated galaxies: disc-to-total ratios, bars and (pseudo-)bulges , 2010, 1001.4890.

[19]  R. Genzel,et al.  THE STRUCTURE OF GRAVITATIONALLY UNSTABLE GAS-RICH DISK GALAXIES , 2010, 1007.0169.

[20]  M. Moll'a,et al.  Chemical evolution of galaxies – I. A composition‐dependent SPH model for chemical evolution and cooling , 2008, 0804.3766.

[21]  J. Huchra,et al.  H II regions and the abundance properties of spiral galaxies , 1994 .

[22]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[23]  T. D. Matteo,et al.  Modelling feedback from stars and black holes in galaxy mergers , 2004, astro-ph/0411108.

[24]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[25]  M. Peeples,et al.  Constraints on star formation driven galaxy winds from the mass–metallicity relation at z= 0 , 2010, 1007.3743.

[26]  R. Teyssier,et al.  The formation of disc galaxies in a ΛCDM universe , 2010, 1004.0005.

[27]  Fabio Governato,et al.  Forming disc galaxies in ΛCDM simulations , 2006 .

[28]  S. White,et al.  Galactic star formation and accretion histories from matching galaxies to dark matter haloes , 2012, 1205.5807.

[29]  S. White,et al.  Simulations of dissipative galaxy formation in hierarchically clustering universes – II. Dynamics of the baryonic component in galactic haloes , 1994 .

[30]  S. White,et al.  Feedback and metal enrichment in cosmological SPH simulations – II. A multiphase model with supernova energy feedback , 2006, astro-ph/0604524.

[31]  B. Gibson,et al.  Disc heating: comparing the Milky Way with cosmological simulations , 2011, 1104.2037.

[32]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[33]  Jeremiah P. Ostriker,et al.  Galactic disks, infall, and the global value of Omega , 1992 .

[34]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[35]  G. Vaucouleurs Photoelectric photometry of the Andromeda Nebula in the UBV system. , 1958 .

[36]  AMAZE - I. The evolution of the mass–metallicity relation at z $>$ 3 , 2008, 0806.2410.

[37]  A. N. V. K. Ravtsov,et al.  TOWARDS A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012 .

[38]  B. Willman,et al.  Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows , 2009, Nature.

[39]  J. Schaye,et al.  The effect of photoionization on the cooling rates of enriched, astrophysical plasmas , 2008, 0807.3748.

[40]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[41]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[42]  J. Ostriker,et al.  FORMING EARLY-TYPE GALAXIES IN ΛCDM SIMULATIONS. I. ASSEMBLY HISTORIES , 2012, 1202.3441.

[43]  R. Giovanelli,et al.  Neutral hydrogen in isolated galaxies. IV - Results for the Arecibo sample , 1984 .

[44]  Wolfgang Voges,et al.  The size distribution of galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0301527.

[45]  Institute for Astronomy,et al.  Formation history, structure and dynamics of discs and spheroids in simulated Milky Way mass galaxies , 2011, 1105.0680.

[46]  B. Gibson,et al.  Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum , 2010, 1010.1004.

[47]  Volker Springel,et al.  Resolving cosmic structure formation with the Millennium-II simulation , 2009, 0903.3041.

[48]  P. Hopkins,et al.  GALAXY DISKS DO NOT NEED TO SURVIVE IN THE ΛCDM PARADIGM: THE GALAXY MERGER RATE OUT TO z ∼ 1.5 FROM MORPHO-KINEMATIC DATA , 2012, 1206.0008.

[49]  T. Ichikawa,et al.  MOIRCS DEEP SURVEY. VIII. EVOLUTION OF STAR FORMATION ACTIVITY AS A FUNCTION OF STELLAR MASS IN GALAXIES SINCE z ∼ 3 , 2010, 1009.0002.

[50]  J. Starck,et al.  The reversal of the star formation-density relation in the distant universe , 2007, astro-ph/0703653.

[51]  L. Kewley,et al.  METALLICITY GRADIENTS AND GAS FLOWS IN GALAXY PAIRS , 2010, 1008.2204.

[52]  S. Courteau,et al.  An Investigation of Sloan Digital Sky Survey Imaging Data and Multi-Band Scaling Relations of Spiral Galaxies (with Dynamical Information) , 2011, 1111.5009.

[53]  A. Kravtsov,et al.  TOWARD A COMPLETE ACCOUNTING OF ENERGY AND MOMENTUM FROM STELLAR FEEDBACK IN GALAXY FORMATION SIMULATIONS , 2012, 1210.4957.

[54]  M. Cappellari,et al.  The SAURON project – XII. Kinematic substructures in early-type galaxies: evidence for discs in fast rotators , 2008, 0807.1505.

[55]  P. Hopkins,et al.  Self-regulated star formation in galaxies via momentum input from massive stars , 2011, 1101.4940.

[56]  J. Navarro,et al.  Dynamics of Cooling Gas in Galactic Dark Halos , 1991 .

[57]  Cheng Li,et al.  Erratum: From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology , 2010, 1006.0106.

[58]  E. Brinks,et al.  THINGS: THE H i NEARBY GALAXY SURVEY , 2008, 0810.2125.

[59]  J. Schaye,et al.  Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations , 2009, 0902.1535.

[60]  A. Dutton,et al.  The impact of feedback on disc galaxy scaling relations , 2008, 0810.4963.

[61]  S. White,et al.  The origin of discs and spheroids in simulated galaxies , 2011, 1112.2220.

[62]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[63]  B. Gibson,et al.  MaGICC discs: matching observed galaxy relationships over a wide stellar mass range , 2012, 1201.3359.

[64]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[65]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[66]  S. White,et al.  Effects of supernova feedback on the formation of galaxy discs , 2008, 0804.3795.

[67]  K. Schawinski,et al.  Environment and self-regulation in galaxy formation , 2009, 0912.0259.

[68]  Early Evolution of Disk Galaxies: Formation of Bulges in Clumpy Young Galactic Disks , 1998, astro-ph/9806355.

[69]  A. Toomre,et al.  Galactic Bridges and Tails , 1972 .

[70]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[71]  S. White,et al.  The formation and survival of discs in a ΛcDM universe , 2008, 0812.0976.

[72]  Matthias Steinmetz,et al.  Simulations of Galaxy Formation in a Λ Cold Dark Matter Universe. II. The Fine Structure of Simulated Galactic Disks , 2003 .

[73]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[74]  G. Stinson,et al.  Star formation and feedback in smoothed particle hydrodynamic simulations – I. Isolated galaxies , 2006, astro-ph/0602350.

[75]  Feedback and metal enrichment in cosmological smoothed particle hydrodynamics simulations ¿ I. A model for chemical enrichment , 2005, astro-ph/0505440.

[76]  D. Weinberg,et al.  Feedback and recycled wind accretion: assembling the z= 0 galaxy mass function , 2009, 0912.0519.

[77]  H. Rix,et al.  Spiral Galaxies in the Near-IR , 1996 .

[78]  Filippo Mannucci,et al.  Type-Ia Supernova Rates and the Progenitor Problem: A Review , 2011, Publications of the Astronomical Society of Australia.

[79]  Daniel Thomas,et al.  Chemical element ratios of SDSS early-type galaxies , 2011, 1112.0322.

[80]  T. Ensslin,et al.  Galactic winds driven by cosmic ray streaming , 2012, 1203.1038.

[81]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[82]  Eric F Darve,et al.  Author ' s personal copy A hybrid method for the parallel computation of Green ’ s functions , 2009 .

[83]  Making Galaxies in a Cosmological Context: The Need for Early Stellar Feedback , 2012, 1208.0002.

[84]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[85]  F. Walter,et al.  HIGH-RESOLUTION ROTATION CURVES AND GALAXY MASS MODELS FROM THINGS , 2008, 0810.2100.

[86]  S. Courteau,et al.  Scaling Relations of Spiral Galaxies , 2007, 0708.0422.

[87]  Lucio Mayer,et al.  FORMING REALISTIC LATE-TYPE SPIRALS IN A ΛCDM UNIVERSE: THE ERIS SIMULATION , 2011, 1103.6030.

[88]  G. Kauffmann,et al.  The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colour , 2005, astro-ph/0508046.

[89]  A. Cimatti,et al.  Multiwavelength Study of Massive Galaxies at z~2. I. Star Formation and Galaxy Growth , 2007, 0705.2831.

[90]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[91]  V. Springel,et al.  Shaping the galaxy stellar mass function with supernova- and AGN-driven winds , 2012, 1205.2694.

[92]  S. White,et al.  Idealized models for galactic disc formation and evolution in ‘realistic’ ΛCDM haloes , 2012, 1203.1190.

[93]  Effects of feedback on the morphology of galaxy discs , 2005, astro-ph/0503676.

[94]  B. Andrews,et al.  THE MASS–METALLICITY RELATION WITH THE DIRECT METHOD ON STACKED SPECTRA OF SDSS GALAXIES , 2012, 1211.3418.

[95]  C. Brook,et al.  The MaGICC volume: reproducing statistical properties of high-redshift galaxies , 2013, 1302.2618.

[96]  Garching,et al.  Chemical signatures of formation processes in the stellar populations of simulated galaxies , 2011, 1110.5864.

[97]  A. Stilp,et al.  Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation , 2012, 1205.5567.

[98]  Garching,et al.  Smoothed particle hydrodynamics for galaxy‐formation simulations: improved treatments of multiphase gas, of star formation and of supernovae feedback , 2003 .

[99]  T. Okamoto The origin of pseudo-bulges in cosmological simulations of galaxy formation , 2012, 1203.5372.

[100]  Matthias Steinmetz,et al.  The Effects of a Photoionizing Ultraviolet Background on the Formation of Disk Galaxies , 1996, astro-ph/9605043.

[101]  B. Gibson,et al.  Properties of simulated Milky Way-mass galaxies in loose group and field environments , 2012, 1210.1030.

[102]  D. McConnell,et al.  Publications of the Astronomical Society of Australia , 2001 .

[103]  S. M. Fall,et al.  Formation and rotation of disc galaxies with haloes , 1980 .

[104]  Nickolay Y. Gnedin,et al.  MODELING MOLECULAR HYDROGEN AND STAR FORMATION IN COSMOLOGICAL SIMULATIONS , 2008, 0810.4148.

[105]  A. Karakas Updated stellar yields from asymptotic giant branch models , 2009, 0912.2142.

[106]  S. McGaugh,et al.  THE BARYONIC TULLY–FISHER RELATION OF GAS-RICH GALAXIES AS A TEST OF ΛCDM AND MOND , 2011, 1107.2934.

[107]  L. Ho,et al.  A unified picture of breaks and truncations in spiral galaxies from SDSS and S4G imaging , 2012, 1208.2893.

[108]  S. Rabien,et al.  From Rings to Bulges: Evidence for Rapid Secular Galaxy Evolution at z ~ 2 from Integral Field Spectroscopy in the SINS Survey , 2008, 0807.1184.

[109]  D. Weinberg,et al.  The n ature of submillimetre galaxies in cosmological hydrodynamic simulations , 2009, 0909.4078.

[110]  The Milky Way, an Exceptionally Quiet Galaxy: Implications for the Formation of Spiral Galaxies , 2007, astro-ph/0702585.

[111]  T. Thompson,et al.  Numerical simulations of radiatively driven dusty winds , 2013, 1302.4440.

[112]  Carlos S. Frenk,et al.  The large-scale structure of the Universe , 2006, Nature.

[113]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[114]  Volker Springel,et al.  Moving‐mesh cosmology: characteristics of galaxies and haloes , 2011, 1109.4638.

[115]  B. Gibson,et al.  Metallicity gradients in disks - Do galaxies form inside-out? , 2012, 1201.6359.