Water-gas shift reaction: finding the mechanistic boundary

[1]  Riitta L. Keiski,et al.  Kinetics of the water-gas shift reaction over several alkane activation and water-gas shift catalysts , 1993 .

[2]  An FTIR Study of the Adsorption of Methanol and Methyl Formate on Potassium-Promoted Cu/SiO2 Catalysts , 1993 .

[3]  T. Shido,et al.  The Effect of Coadsorbates in Reverse Water-Gas Shift Reaction on ZnO, in Relation to Reactant-Promoted Reaction Mechanism , 1993 .

[4]  G. Hutchings A comparative evaluation of cobalt chromium oxide, cobalt manganese oxide, and copper manganese oxide as catalysts for the water-gas shift reaction , 1992 .

[5]  Influence of surface oxygen vacancies on the catalytic activity of copper oxide , 1992 .

[6]  Deactivation of the high-temperature water-gas shift catalyst in nonisothermal conditions , 1992 .

[7]  Charles T. Campbell,et al.  A kinetic model of the water gas shift reaction , 1992 .

[8]  Charles T. Campbell,et al.  Kinetics of the reverse water-gas shift reaction over Cu(110) , 1992 .

[9]  G. Chinchen,et al.  Sensitive and insensitive reactions on copper catalysts: the water-gas shift reaction and methanol synthesis from carbon dioxide , 1991 .

[10]  G. Webb,et al.  Adsorption of water on polycrystalline copper: relevance to the water gas shift reaction , 1991 .

[11]  T. Shido,et al.  Reactant-promoted reaction mechanism for water-gas shift reaction on ZnO, as the genesis of surface catalysis , 1991 .

[12]  Charles N. Satterfield,et al.  Heterogeneous catalysis in industrial practice , 1991 .

[13]  A. Kiennemann,et al.  Water-gas shift reaction over chromia-promoted magnetite. Use of temperature-programmed desorption and chemical trapping in the study of the reaction mechanism , 1990 .

[14]  C. Campbell,et al.  Kinetics and mechanism of the water-gas shift reaction catalysed by the clean and Cs-promoted Cu(110) surface: a comparison with Cu(111) , 1990 .

[15]  T. Salmi,et al.  Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu—ZnO Catalyst , 1989 .

[16]  A. Heuer,et al.  Predictions of cation distributions in AB2O4 spinels from normalized ion energies , 1989 .

[17]  Alan R. Katritzky,et al.  Aromaticity as a Quantitative Concept. 1. A Statistical Demonstration of the Orthogonality of "Classical" and "Magnetic" Aromaticity in Five- and Six-Membered Heterocycles , 1989 .

[18]  T. Salmi,et al.  A dynamic study of the water-gas shift reaction over an industrial ferrochrome catalyst , 1988 .

[19]  G. Chinchen,et al.  A comparison of the water-gas shift reaction on chromia-promoted magnetite and on supported copper catalysts , 1988 .

[20]  R. Lehnert,et al.  Physical and catalytic properties of high-temperature water-gas shift catalysts based upon iron—chromium oxides , 1988 .

[21]  J. Heras,et al.  The Behavior of Water on Metal Surfaces , 1988 .

[22]  G. Hutchings,et al.  Cobalt/manganese oxide water gas shift catalysts: I. Competition Between Carbon Monoxide Hydrogenation and Water Gas Shift Activity , 1988 .

[23]  G. Ghiotti,et al.  Chemical and Physical Properties of Copper-Based Catalysts for CO Shift Reaction and Methanol Synthesis , 1987 .

[24]  C. Campbell,et al.  A surface science investigation of the water-gas shift reaction on Cu(111) , 1987 .

[25]  O. Gijzeman,et al.  Surface and subsurface oxygen on Cu(111), Cu(111)-Fe and Cu(110) and their influence on the reduction with CO and H2 , 1987 .

[26]  K. C. Waugh,et al.  Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalysts , 1987 .

[27]  J. Dumesic,et al.  The effects of metal-oxygen bond strength on properties of oxides: II. Water-gas shift over bulk oxides , 1986 .

[28]  T. Peev,et al.  Effective routes of stabilization of pyrophoric industrial catalysts , 1986 .

[29]  A. Spitzer,et al.  An XPS study of the water adsorption on Cu(110) , 1985 .

[30]  A. Kiennemann,et al.  Application of chemical trapping to the determination of surface species and to the study of their evolution under reaction conditions in heterogeneous catalysis , 1985 .

[31]  A. Spitzer,et al.  The adsorption of H2O on Cu(100) surfaces , 1985 .

[32]  F. Garbassi,et al.  XPS study on the low-temperature CO shift reaction catalyst: II. The effects of the addition of alumina and reaction conditions , 1984 .

[33]  F. Garbassi,et al.  XPS study on the low-temperature CO shift reaction catalyst: I. The unreduced copper-zinc system , 1984 .

[34]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst. , 1984 .

[35]  G. Chinchen,et al.  Water-gas shift reaction over an iron oxide/chromium oxide catalyst.: II: Stability of activity , 1984 .

[36]  E. Iglesia,et al.  Decomposition of formic acid on copper, nickel, and copper-nickel alloys: II. Catalytic and temperature-programmed decomposition of formic acid on CuSiO2, CuAl2O3, and Cu powder , 1983 .

[37]  Dependence of the kinetics of the low-temperature water-gas shift reaction on the catalyst oxygen activity as investigated by wavefront analysis , 1983 .

[38]  A. Spitzer,et al.  The adsorption of water on clean and oxygen covered Cu(110) , 1982 .

[39]  G. Pleizier,et al.  Alkali-promoted alumina catalysts: II. Water-gas shift reaction☆ , 1982 .

[40]  C. Lund,et al.  Strong oxide-oxide interactions in silica-supported magnetite catalysts: IV. Catalytic consequences of the interaction in water-gas shift , 1982 .

[41]  A. Spitzer,et al.  The adsorption of oxygen on copper surfaces: II. Cu(111) , 1982 .

[42]  The use of CO2CO gas mixtures to study adsorption on chromia-promoted magnetite at water-gas shift temperatures , 1981 .

[43]  D. Ollis,et al.  The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts , 1981 .

[44]  H. Kung,et al.  The surface cation densities of iron oxide-chromium oxide solid solutions , 1981 .

[45]  M. W. Roberts,et al.  Photoelectron spectroscopic evidence for the activation of adsorbate bonds by chemisorbed oxygen , 1980 .

[46]  W. A. Jong,et al.  Kinetics and mechanism of the CO shift on CuZnO: 1. Kinetics of the forward and reverse CO shift reactions , 1980 .

[47]  B. Sexton Observation of formate species on a copper (100) surface by high resolution electron energy loss spectroscopy , 1979 .

[48]  Phase boundaries for the carbon-hydrogen-oxygen system in equilibrium with carbides and oxides of iron and nickel , 1979 .

[49]  Richard G. Herman,et al.  Catalytic synthesis of methanol from COH2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts , 1979 .

[50]  G. Somorjai,et al.  Heats of Chemisorption of O2, H2, CO, CO2, and N2 on Polycrystalline and Single Crystal Transition Metal Surfaces , 1979 .

[51]  R. Madix,et al.  The selective oxidation of CH3OH to H2CO on a copper(110) catalyst , 1978 .

[52]  M. Vannice,et al.  The catalytic synthesis of hydrocarbons from H2CO mixtures over the Group VIII metals: V. The catalytic behavior of silica-supported metals , 1977 .

[53]  R. Eisenberg,et al.  Homogeneous catalysis of the water gas shift reaction using rhodium carbonyl iodide , 1977 .

[54]  F. Cotton,et al.  Basic Inorganic Chemistry , 1976 .

[55]  R. Jaffee,et al.  The Physical Basis for Heterogeneous Catalysis , 1975 .

[56]  D. Nicholls Complexes and first-row transition elements , 1974 .

[57]  M. Boudart,et al.  Mössbauer spectroscopy of CO shift catalysts promoted with lead , 1973 .

[58]  S. Oki,et al.  Identification of rate-controlling steps for the water-gas shift reaction over an iron oxide catalyst , 1973 .

[59]  J. Criado,et al.  Catalytic Decomposition of Formic Acid on Metal Oxides , 1972 .

[60]  John S. Campbell Influences of Catalyst Formulation and Poisoning on the Activity and Die-Off of Low Temperature Shift Catalysts , 1970 .

[61]  T. Onishi,et al.  Dynamic technique to elucidate the reaction intermediate in surface catalysis. Water-gas shift reaction , 1970 .

[62]  Alexandra Navrotsky,et al.  The thermodynamics of cation distributions in simple spinels , 1967 .

[63]  The Zinc Oxide-Copper Catalyst for Carbon Monoxide-Shift Conversion. I. The Dependency of the Catalytic Activity on the Chemical Composition of the Catalyst , 1967 .

[64]  T. Onishi,et al.  Dynamic treatment of chemisorbed species by means of infra-red technique. Mechanism of decomposition of formic acid over alumina and silica , 1967 .

[65]  Hans Bohlbro,et al.  The kinetics of the water-gas conversion IV. Influence of alkali on the rate equation , 1964 .

[66]  Y. Yoneda,et al.  Exchange of Oxygen Atoms among Carbon Dioxide, Carbon Monoxide and Oxide Catalysts of Spinel Type , 1958 .

[67]  Water-Gas Shift Reaction. Effect of Pressure on Rate over an Iron- Oxide-Chromium Oxide Catalyst. , 1950 .

[68]  A. K. Brewer THE PHOTOELECTRIC PROPERTIES OF AMMONIA CATALYSTS , 1931 .