Insulin-resistant brain state: The culprit in sporadic Alzheimer's disease?

[1]  N. Bhat Linking cardiometabolic disorders to sporadic Alzheimer’s disease: a perspective on potential mechanisms and mediators , 2010, Journal of neurochemistry.

[2]  P. K. Kamat,et al.  Protective effect of quercetin against intracerebral streptozotocin induced reduction in cerebral blood flow and impairment of memory in mice , 2010, Behavioural Brain Research.

[3]  Ryuichi Morishita,et al.  Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes , 2010, Proceedings of the National Academy of Sciences.

[4]  Rosemary O’Connor,et al.  Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer's disease indicate possible resistance to IGF-1 and insulin signalling , 2010, Neurobiology of Aging.

[5]  F. Domoki,et al.  Cerebrovascular Responses to Insulin in Rats , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  I. Grundke‐Iqbal,et al.  Dysregulation of insulin signaling, glucose transporters, O-GlcNAcylation, and phosphorylation of tau and neurofilaments in the brain: Implication for Alzheimer's disease. , 2009, The American journal of pathology.

[7]  G. Siciliano,et al.  The role of vascular factors in late-onset sporadic Alzheimer's disease. Genetic and molecular aspects. , 2009, Current Alzheimer research.

[8]  R. Agrawal,et al.  A study of brain insulin receptors, AChE activity and oxidative stress in rat model of ICV STZ induced dementia , 2009, Neuropharmacology.

[9]  F. Domoki,et al.  Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. , 2009, American journal of physiology. Regulatory, integrative and comparative physiology.

[10]  Sung Han,et al.  Circadian oscillation of hippocampal MAPK activity and cAMP: implications for memory persistence , 2008, Nature Neuroscience.

[11]  W. Dröge,et al.  Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. , 2008, Antioxidants & redox signaling.

[12]  I. Grundke‐Iqbal,et al.  Decreased glucose transporters correlate to abnormal hyperphosphorylation of tau in Alzheimer disease , 2008, FEBS letters.

[13]  Ling Li,et al.  Intake of Sucrose-sweetened Water Induces Insulin Resistance and Exacerbates Memory Deficits and Amyloidosis in a Transgenic Mouse Model of Alzheimer Disease* , 2007, Journal of Biological Chemistry.

[14]  Christian Hölscher,et al.  Common pathological processes in Alzheimer disease and type 2 diabetes: A review , 2007, Brain Research Reviews.

[15]  P. Moreira,et al.  Alzheimer's disease: a lesson from mitochondrial dysfunction. , 2007, Antioxidants & redox signaling.

[16]  J. Donnelly,et al.  Peripheral insulin and brain structure in early Alzheimer disease , 2007, Neurology.

[17]  Li Yang,et al.  Amyolid precursor protein mediates presynaptic localization and activity of the high-affinity choline transporter , 2007, Proceedings of the National Academy of Sciences.

[18]  P. Moreira,et al.  Brain mitochondrial dysfunction as a link between Alzheimer's disease and diabetes , 2007, Journal of the Neurological Sciences.

[19]  P. Riederer,et al.  Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein , 2007, Journal of neurochemistry.

[20]  M. Weinstock,et al.  Ladostigil prevents gliosis, oxidative–nitrative stress and memory deficits induced by intracerebroventricular injection of streptozotocin in rats , 2007, Neuropharmacology.

[21]  G. Cole,et al.  The role of insulin and neurotrophic factor signaling in brain aging and Alzheimer’s Disease , 2007, Experimental Gerontology.

[22]  Michael Bader,et al.  Working memory deficits in transgenic rats overexpressing human adenosine A2A receptors in the brain , 2007, Neurobiology of Learning and Memory.

[23]  F. Metzger,et al.  Disturbed Cross Talk between Insulin-Like Growth Factor I and AMP-Activated Protein Kinase as a Possible Cause of Vascular Dysfunction in the Amyloid Precursor Protein/Presenilin 2 Mouse Model of Alzheimer's Disease , 2007, The Journal of Neuroscience.

[24]  Tracy L. Niedzielko,et al.  Impaired platelet mitochondrial activity in Alzheimer's disease and mild cognitive impairment. , 2006, Mitochondrion.

[25]  M. Goedert,et al.  A Century of Alzheimer's Disease , 2006, Science.

[26]  P. Ramarao,et al.  Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. , 2006, Life sciences.

[27]  M. Bartels,et al.  Stage-dependent BDNF serum concentrations in Alzheimer’s disease , 2006, Journal of Neural Transmission.

[28]  M. Ansari,et al.  Coenzyme Q10 modulates cognitive impairment against intracerebroventricular injection of streptozotocin in rats , 2006, Behavioural Brain Research.

[29]  G. Ramakers,et al.  Insulin signaling in the central nervous system: Learning to survive , 2006, Progress in Neurobiology.

[30]  S. Davis,et al.  Mitogen‐activated protein kinase/extracellular regulated kinase signalling and memory stabilization: a review , 2006, Genes, brain, and behavior.

[31]  G. Casadesus,et al.  Brain and brawn , 2006, Neurology.

[32]  C. Bondy,et al.  Tau is hyperphosphorylated in the insulin-like growth factor-I null brain. , 2005, Endocrinology.

[33]  B. Hyman,et al.  Decreased levels of BDNF protein in Alzheimer temporal cortex are independent of BDNF polymorphisms , 2005, Experimental Neurology.

[34]  P. Matarrese,et al.  Oxidative imbalance and cathepsin D changes as peripheral blood biomarkers of Alzheimer disease: A pilot study , 2005, FEBS letters.

[35]  P. Ramarao,et al.  Effect of donepezil and lercanidipine on memory impairment induced by intracerebroventricular streptozotocin in rats. , 2005, Life sciences.

[36]  Parvesh Bubber,et al.  Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications , 2005, Annals of neurology.

[37]  B. Thorens,et al.  Immunocytochemical localization of the glucose transporter 2 (GLUT2) in the adult rat brain. II. Electron microscopic study , 2004, Journal of Chemical Neuroanatomy.

[38]  B. Thorens,et al.  Distribution and anatomical localization of the glucose transporter 2 (GLUT2) in the adult rat brain—an immunohistochemical study , 2004, Journal of Chemical Neuroanatomy.

[39]  A. Schürmann,et al.  The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. , 2004, JPEN. Journal of parenteral and enteral nutrition.

[40]  Patrick R Hof,et al.  Diet‐induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer's disease , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[41]  S. Craft,et al.  Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. , 2004, European journal of pharmacology.

[42]  D. Alkon,et al.  Insulin and the insulin receptor in experimental models of learning and memory. , 2004, European journal of pharmacology.

[43]  S. Hoyer Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. , 2004, European journal of pharmacology.

[44]  B. McEwen,et al.  Glucose transporter expression in the central nervous system: relationship to synaptic function. , 2004, European journal of pharmacology.

[45]  William A Banks,et al.  The source of cerebral insulin. , 2004, European journal of pharmacology.

[46]  C. Kahn,et al.  Role for neuronal insulin resistance in neurodegenerative diseases , 2004 .

[47]  M. Weinstock,et al.  Rat models of dementia based on reductions in regional glucose metabolism, cerebral blood flow and cytochrome oxidase activity , 2004, Journal of Neural Transmission.

[48]  D. Selkoe,et al.  Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death , 2003, Neuron.

[49]  M. Weinstock,et al.  Intracerebroventricular injection of streptozotocin causes neurotoxicity to myelin that contributes to spatial memory deficits in rats , 2003, Experimental Neurology.

[50]  Hsueh‐Meei Huang,et al.  Inhibition of α‐ketoglutarate dehydrogenase complex promotes cytochrome c release from mitochondria, caspase‐3 activation, and necrotic cell death , 2003, Journal of neuroscience research.

[51]  Huaxi Xu,et al.  Potential roles of insulin and IGF-1 in Alzheimer's disease , 2003, Trends in Neurosciences.

[52]  E. Van Obberghen,et al.  Molecular mechanisms of insulin receptor substrate protein‐mediated modulation of insulin signalling , 2003, FEBS letters.

[53]  L. Murri,et al.  Causative and susceptibility genes for Alzheimer’s disease: a review , 2003, Brain Research Bulletin.

[54]  S. Asthana,et al.  Insulin increases CSF Aβ42 levels in normal older adults , 2003, Neurology.

[55]  Christina A. Wilson,et al.  GSK-3α regulates production of Alzheimer's disease amyloid-β peptides , 2003, Nature.

[56]  H. Braak,et al.  Role of protein kinase B in Alzheimer's neurofibrillary pathology , 2003, Acta Neuropathologica.

[57]  H. Haas,et al.  Cortico-striatal synaptic plasticity in endothelial nitric oxide synthase deficient mice , 2003, Brain Research.

[58]  Y. Gupta,et al.  Chronic treatment with trans resveratrol prevents intracerebroventricular streptozotocin induced cognitive impairment and oxidative stress in rats. , 2002, Life sciences.

[59]  Gabriele Siciliano,et al.  Cytochrome c oxidase and mitochondrial F1F0-ATPase (ATP synthase) activities in platelets and brain from patients with Alzheimer’s disease , 2002, Neurobiology of Aging.

[60]  Dario R. Alessi,et al.  The insulin signalling pathway , 2002, Current Biology.

[61]  David E. James,et al.  Regulated transport of the glucose transporter GLUT4 , 2002, Nature Reviews Molecular Cell Biology.

[62]  Anders Wallin,et al.  Increased intrathecal levels of the angiogenic factors VEGF and TGF-β in Alzheimer’s disease and vascular dementia , 2002, Neurobiology of Aging.

[63]  S. Hoyer,et al.  The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update , 2002, Journal of Neural Transmission.

[64]  A. Saltiel,et al.  Insulin signaling pathways in time and space. , 2002, Trends in cell biology.

[65]  G. Alexander,et al.  Positron emission tomography in evaluation of dementia: Regional brain metabolism and long-term outcome. , 2001, JAMA.

[66]  M. Quon,et al.  Insulin-stimulated Activation of eNOS Is Independent of Ca2+ but Requires Phosphorylation by Akt at Ser1179 * , 2001, The Journal of Biological Chemistry.

[67]  A. Nunomura,et al.  Oxidative Damage Is the Earliest Event in Alzheimer Disease , 2001, Journal of neuropathology and experimental neurology.

[68]  R. Castellani,et al.  Active glycation in neurofibrillary pathology of Alzheimer disease: Nε-(Carboxymethyl) lysine and hexitol-lysine , 2001 .

[69]  C. R. Park,et al.  Cognitive effects of insulin in the central nervous system , 2001, Neuroscience & Biobehavioral Reviews.

[70]  P. Greengard,et al.  Stimulation of β-Amyloid Precursor Protein Trafficking by Insulin Reduces Intraneuronal β-Amyloid and Requires Mitogen-Activated Protein Kinase Signaling , 2001, The Journal of Neuroscience.

[71]  R. Schechter,et al.  Neuronal synthesized insulin roles on neural differentiation within fetal rat neuron cell cultures. , 2001, Brain research. Developmental brain research.

[72]  M. Mattson,et al.  Perturbed endoplasmic reticulum function, synaptic apoptosis and the pathogenesis of Alzheimer's disease. , 2001, Biochemical Society symposium.

[73]  B. Shukitt-Hale,et al.  Copernicus revisited: amyloid beta in Alzheimer’s disease , 2001, Neurobiology of Aging.

[74]  Y. Gupta,et al.  Intracerebroventricular injection of streptozotocin in rats produces both oxidative stress in the brain and cognitive impairment. , 2001, Life sciences.

[75]  René Hen,et al.  Decreased nuclear β‐catenin, tau hyperphosphorylation and neurodegeneration in GSK‐3β conditional transgenic mice , 2001 .

[76]  L. Tretter,et al.  Inhibition of Krebs Cycle Enzymes by Hydrogen Peroxide: A Key Role of α-Ketoglutarate Dehydrogenase in Limiting NADH Production under Oxidative Stress , 2000, The Journal of Neuroscience.

[77]  R. Munday,et al.  Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin , 2000, Diabetologia.

[78]  M. Racchi,et al.  Insulin regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase‐dependent pathway , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[79]  A. Nunomura,et al.  Mitochondrial abnormalities in Alzheimer disease , 2000, Neurobiology of Aging.

[80]  D. Selkoe,et al.  Neurons Regulate Extracellular Levels of Amyloid β-Protein via Proteolysis by Insulin-Degrading Enzyme , 2000, The Journal of Neuroscience.

[81]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[82]  J. Newcomer,et al.  Enhancement of memory in Alzheimer disease with insulin and somatostatin, but not glucose. , 1999, Archives of general psychiatry.

[83]  L. Frölich,et al.  A Disturbance in the Neuronal Insulin Receptor Signal Transduction in Sporadic Alzheimer's Disease , 1999, Annals of the New York Academy of Sciences.

[84]  S. Hoyer,et al.  Inhibition of the Neuronal Insulin Receptor Causes Alzheimer‐like Disturbances in Oxidative/Energy Brain Metabolism and in Behavior in Adult Rats , 1999, Annals of the New York Academy of Sciences.

[85]  F. Pirozzolo,et al.  Brain choline acetyltransferase and mental function in Alzheimer disease. , 1999, Archives of neurology.

[86]  T. Fahrig,et al.  Cognitive performance and biochemical markers in septum, hippocampus and striatum of rats after an i.c.v. injection of streptozotocin: a correlation analysis , 1999, Behavioural Brain Research.

[87]  George Perry,et al.  RNA Oxidation Is a Prominent Feature of Vulnerable Neurons in Alzheimer’s Disease , 1999, The Journal of Neuroscience.

[88]  M. Czech,et al.  Signaling Mechanisms That Regulate Glucose Transport* , 1999, The Journal of Biological Chemistry.

[89]  L. Hersh,et al.  Insulin-degrading Enzyme Regulates Extracellular Levels of Amyloid β-Protein by Degradation* , 1998, The Journal of Biological Chemistry.

[90]  S. Hoyer,et al.  Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. , 1998, Behavioral neuroscience.

[91]  Shun-Jiang Yu,et al.  The 45 kDa form of glucose transporter 1 (GLUT1) is localized in oligodendrocyte and astrocyte but not in microglia in the rat brain , 1998, Brain Research.

[92]  S. Vannucci,et al.  Glucose transporter proteins in brain: Delivery of glucose to neurons and glia , 1997, Glia.

[93]  C. Ackerley,et al.  Recruitment of functional GABAA receptors to postsynaptic domains by insulin , 1997, Nature.

[94]  V. Lee,et al.  Insulin and Insulin-like Growth Factor-1 Regulate Tau Phosphorylation in Cultured Human Neurons* , 1997, The Journal of Biological Chemistry.

[95]  Joseph S. Beckman,et al.  Widespread Peroxynitrite-Mediated Damage in Alzheimer’s Disease , 1997, The Journal of Neuroscience.

[96]  David R. Kaplan,et al.  Regulation of Neuronal Survival by the Serine-Threonine Protein Kinase Akt , 1997, Science.

[97]  J. Mazziotta,et al.  Early Detection of Alzheimer's Disease by Combining Apolipoprotein E and Neuroimaging a , 1996, Annals of the New York Academy of Sciences.

[98]  D. Beju,et al.  Preproinsulin I and II mRNAs and insulin electron microscopic immunoreaction are present within the rat fetal nervous system , 1996, Brain Research.

[99]  J. David Sweatt,et al.  Activation of p42 Mitogen-activated Protein Kinase in Hippocampal Long Term Potentiation* , 1996, The Journal of Biological Chemistry.

[100]  C. Roberts,et al.  Interaction between the Insulin Receptor and Its Downstream Effectors , 1996, The Journal of Biological Chemistry.

[101]  P. Cohen,et al.  Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B , 1995, Nature.

[102]  J. Jolles,et al.  Brain enzyme activities after intracerebroventricular injection of streptozotocin in rats receiving acetyl-L-carnitine. , 1995, European journal of pharmacology.

[103]  Michael E. Greenberg,et al.  Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis , 1995, Science.

[104]  S. Hoyer,et al.  Desensitization of the neuronal insulin receptor: a new approach in the etiopathogenesis of late-onset sporadic dementia of the Alzheimer type (SDAT)? , 1995, Archives of gerontology and geriatrics.

[105]  S. Hoyer,et al.  Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats , 1994, International Journal of Developmental Neuroscience.

[106]  C. Filley,et al.  Reduced platelet cytochrome c oxidase activity in Alzheimer's disease , 1994, Neurology.

[107]  P. R. Hof,et al.  Pathological alterations of the cerebral microvasculature in Alzheimer's disease and related dementing disorders , 1994, Acta Neuropathologica.

[108]  J. Jolles,et al.  Behavioral and biochemical effects of an ICV injection of streptozotocin in old Lewis rats , 1994, Pharmacology Biochemistry and Behavior.

[109]  D. S. Zahm,et al.  Insulin gene expression and insulin synthesis in mammalian neuronal cells. , 1994, The Journal of biological chemistry.

[110]  C. Kahn,et al.  The insulin signaling system. , 1994, The Journal of biological chemistry.

[111]  S. Hoyer,et al.  Action of the diabetogenic drug streptozotocin on glycolytic and glycogenolytic metabolism in adult rat brain cortex and hippocampus , 1993, International Journal of Developmental Neuroscience.

[112]  K. Imahori,et al.  Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments , 1993 .

[113]  P. Pietrini,et al.  Early Detection of Alzheimer's Disease: A Statistical Approach Using Positron Emission Tomographic Data , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[114]  J. Jolles,et al.  Spatial learning deficit and reduced hippocampal ChAT activity in rats after an ICV injection of streptozotocin. , 1993, Pharmacology, biochemistry, and behavior.

[115]  M. Raizada,et al.  The cellular and physiological actions of insulin in the central nervous system , 1993, Neurochemistry International.

[116]  J. Nobrega,et al.  Brain Cytochrome Oxidase in Alzheimer's Disease , 1992, Journal of neurochemistry.

[117]  R. Schechter,et al.  Developmental regulation of insulin in the mammalian central nervous system , 1992, Brain Research.

[118]  R. Nitsch,et al.  Nerve growth factor and choline acetyltransferase activity levels in the rat brain following experimental impairment of cerebral glucose and energy metabolism , 1992, Journal of neuroscience research.

[119]  R. Nitsch,et al.  Local action of the diabetogenic drug, streptozotocin, on glucose and energy metabolism in rat brain cortex , 1991, Neuroscience Letters.

[120]  R. Moxley,et al.  Distribution of insulin receptor-like immunoreactivity in the rat forebrain , 1989, Neuroscience.

[121]  C. Kahn,et al.  The insulin receptor and the molecular mechanism of insulin action. , 1988, The Journal of clinical investigation.

[122]  W. Young Periventricular hypothalamic cells in the rat brain contain insulin mRNA , 1986, Neuropeptides.

[123]  P. Mcgeer,et al.  Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain , 1984, Neurology.

[124]  D. Neary,et al.  Presynaptic Cholinergic Dysfunction in Patients with Dementia , 1983, Journal of neurochemistry.

[125]  J. Coyle,et al.  Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. , 1982, Science.

[126]  M. Brownstein,et al.  Insulin receptors are widely distributed in the central nervous system of the rat , 1978, Nature.

[127]  R. U. Margolis,et al.  Insulin in the Cerebrospinal Fluid , 1967, Nature.

[128]  M. Kidd ALZHEIMER'S DISEASE--AN ELECTRON MICROSCOPICAL STUDY. , 1964, Brain : a journal of neurology.

[129]  K. Smith,et al.  The ultrastructure of senile plaques. , 1964, The American journal of pathology.

[130]  R. Terry,et al.  ULTRASTRUCTURAL STUDIES IN ALZHEIMER'S PRESENILE DEMENTIA. , 1964, The American journal of pathology.

[131]  F. LaFerla,et al.  Alzheimer's disease. , 2010, The New England journal of medicine.

[132]  P. Riederer,et al.  Insulin-resistant brain state after intracerebroventricular streptozotocin injection exacerbates Alzheimer-like changes in Tg2576 AbetaPP-overexpressing mice. , 2010, Journal of Alzheimer's disease : JAD.

[133]  P. Moreira,et al.  An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer's disease. , 2009, Journal of Alzheimer's disease : JAD.

[134]  S. Rapoport Coupled reductions in brain oxidative phosphorylation and synaptic function can be quantified and staged in the course of Alzheimer disease , 2009, Neurotoxicity research.

[135]  Xiongwei Zhu,et al.  Insulin is a two-edged knife on the brain. , 2009, Journal of Alzheimer's disease : JAD.

[136]  J. Hardy,et al.  The Amyloid Hypothesis of Alzheimer ’ s Disease : Progress and Problems on the Road to Therapeutics , 2009 .

[137]  A. Erol An integrated and unifying hypothesis for the metabolic basis of sporadic Alzheimer's disease. , 2008, Journal of Alzheimer's disease : JAD.

[138]  D. Leroith,et al.  Insulin and insulin-like growth factor receptors in the nervous system , 2008, Molecular Neurobiology.

[139]  S. Hoyer,et al.  Central insulin resistance as a trigger for sporadic Alzheimer-like pathology: an experimental approach. , 2007, Journal of neural transmission. Supplementum.

[140]  Xiongwei Zhu,et al.  Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. , 2007, Journal of Alzheimer's disease : JAD.

[141]  J. Wands,et al.  Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[142]  P. Riederer,et al.  Gene expression alterations in brain areas of intracerebroventricular streptozotocin treated rat. , 2006, Journal of Alzheimer's disease : JAD.

[143]  Manuel Buttini,et al.  Mice as models: transgenic approaches and Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[144]  J. Wands,et al.  Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[145]  Ming Tong,et al.  Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. , 2006, Journal of Alzheimer's disease : JAD.

[146]  R. Nitsch,et al.  Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type , 2005, Journal of Neural Transmission.

[147]  J. Wands,et al.  Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer's disease. , 2005, Journal of Alzheimer's disease : JAD.

[148]  J. Wands,et al.  Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease--is this type 3 diabetes? , 2005, Journal of Alzheimer's disease : JAD.

[149]  J. Wands,et al.  Insulin and insulin-like growth factor expression and function deteriorate with progression of Alzheimer's disease: link to brain reductions in acetylcholine. , 2005, Journal of Alzheimer's disease : JAD.

[150]  M. Fiedorowicz,et al.  Expansion of the Golgi apparatus in rat cerebral cortex following intracerebroventricular injections of streptozotocin. , 2004, Acta neurobiologiae experimentalis.

[151]  S. Hoyer Causes and consequences of disturbances of cerebral glucose metabolism in sporadic Alzheimer disease: therapeutic implications. , 2004, Advances in experimental medicine and biology.

[152]  M. S. Santos,et al.  Stimulation of Immunoreactive Insulin Release by Glucose in Rat Brain Synaptosomes , 2004, Neurochemical Research.

[153]  Christina A. Wilson,et al.  GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. , 2003, Nature.

[154]  S. Asthana,et al.  Insulin increases CSF Abeta42 levels in normal older adults. , 2003, Neurology.

[155]  R. Hen,et al.  Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. , 2001, The EMBO journal.

[156]  D. Selkoe Alzheimer's disease results from the cerebral accumulation and cytotoxicity of amyloid beta-protein. , 2001, Journal of Alzheimer's disease : JAD.

[157]  M. Smith,et al.  Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. , 2001, Free radical biology & medicine.

[158]  T Szkudelski,et al.  The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. , 2001, Physiological research.

[159]  I. Skoog Vascular aspects in Alzheimer's disease. , 2000, Journal of neural transmission. Supplementum.

[160]  C. Godinot,et al.  Cytochrome c Oxidase and Mitochondrial Pathology , 1999 .

[161]  S. Hoyer Risk factors for Alzheimer's disease during aging. Impacts of glucose/energy metabolism. , 1998, Journal of neural transmission. Supplementum.

[162]  K. Jellinger,et al.  Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease , 1998, Journal of Neural Transmission.

[163]  K. Imahori,et al.  Glycogen synthase kinase 3 beta is identical to tau protein kinase I generating several epitopes of paired helical filaments. , 1993, FEBS letters.

[164]  J. Foncin,et al.  [Ultrastructure of senile plaques]. , 1965, Revue neurologique.