Excited states of ReO-4 : A comprehensive time-dependent relativistic density functional theory study

Abstract The perrhenate anion, ReO 4 - , is taken as a showcase of heavy transition metal complexes, to examine the performance of time-dependent relativistic density functional linear response theory for electronic excitations, which is based on a newly proposed exact two-component Hamiltonian resulting from the symmetrized elimination of the small component. In total 30 scalar and 63 spinor excited states are investigated and the results are grossly in good agreement with those by the singles and doubles coupled-cluster linear response theory. It is found that only a few scalar states of 3T1 and 3T2 symmetries are split significantly by the spin–orbit coupling, whereas only those excited states involving the Rydberg-type virtual orbital are affected by the solvent effects. The nature of the optical absorption spectra is also highlighted.

[1]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[2]  B. Krebs,et al.  Refinements of the crystal structures of KTcO4, KReO4 and OsO4. The bond lengths in tetrahedral oxoanions and oxides of d0 transition metals , 1976 .

[3]  M. Petersilka,et al.  Excitation energies from time-dependent density-functional theory. , 1996 .

[4]  T. Shido,et al.  Performance and characterization of a new crystalline SbRe2O6 catalyst for selective oxidation of methanol to methylal , 2000 .

[5]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[6]  A. Müller,et al.  Berechnung von Kraftkonstanten anorganischer Verbindungen—IV Die Berechnung von Kraftkonstanten tetraedrischer Oxoanionen der Übergangsmetalle nach dem Quadratsummen-Minimum-Verfahren , 1966 .

[7]  Y. Iwasawa,et al.  Unique Performance and Characterization of a Crystalline SbRe2O6 Catalyst for Selective Ammoxidation of Isobutane , 2002 .

[8]  Kavita R. Jain,et al.  Immobilization of Organorhenium(VII) Oxides , 2007 .

[9]  B. B. Meshkov,et al.  Molecular structure of mixed adsorption layers surfactant—polymer at a liquid—liquid interface , 1996 .

[10]  Wenli Zou,et al.  Time-dependent quasirelativistic density-functional theory based on the zeroth-order regular approximation. , 2005, The Journal of chemical physics.

[11]  K. Hirao,et al.  Recent Advances in Relativistic Molecular Theory , 2004 .

[12]  I. Ross,et al.  The electronic spectra of osmium and ruthenium tetroxides , 1967 .

[13]  A. Sakthivel,et al.  Heterogenization of an organorhenium(VII) oxide on a modified mesoporous molecular sieve. , 2006, Dalton transactions.

[14]  Roland Lindh,et al.  New relativistic ANO basis sets for transition metal atoms. , 2005, The journal of physical chemistry. A.

[15]  W. Herrmann Essays on organometallic chemistry, VII. Laboratory curiosities of yesterday, catalysts of tomorrow: organometallic oxides , 1995 .

[16]  Lan Cheng,et al.  Making four- and two-component relativistic density functional methods fully equivalent based on the idea of "from atoms to molecule". , 2007, The Journal of chemical physics.

[17]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[18]  P. Jørgensen,et al.  Large-scale calculations of excitation energies in coupled cluster theory: The singlet excited states of benzene , 1996 .

[19]  J. Čejka,et al.  Rhenium oxide supported on organized mesoporous alumina — A highly active and versatile catalyst for alkene, diene, and cycloalkene metathesis , 2006 .

[20]  K. Schwochau,et al.  Vacuo ultraviolet spectra of permanganate, pertechnetate and perrhenate , 1969 .

[21]  H. Komber,et al.  Methyltrioxorhenium as Catalyst for Olefin Metathesis , 1991 .

[22]  Werner Kutzelnigg,et al.  Quasirelativistic theory equivalent to fully relativistic theory. , 2005, The Journal of chemical physics.

[23]  Erik Van Lenthe,et al.  Optimized Slater‐type basis sets for the elements 1–118 , 2003, J. Comput. Chem..

[24]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[25]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[26]  Daoling Peng,et al.  Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory. , 2006, The Journal of chemical physics.

[27]  Wenli Zou,et al.  Time-dependent four-component relativistic density-functional theory for excitation energies. II. The exchange-correlation kernel. , 2005, The Journal of chemical physics.

[28]  Mei Wang,et al.  Methyltrioxorhenium as Catalyst of a Novel Aldehyde Olefination , 1991 .

[29]  Evert Jan Baerends,et al.  Molecular calculations of excitation energies and (hyper)polarizabilities with a statistical average of orbital model exchange-correlation potentials , 2000 .

[30]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[31]  Fan Wang,et al.  The Beijing Density Functional (BDF) Program Package: Methodologies and Applications , 2003 .

[32]  Wenjian Liu,et al.  Comparison of Different Polarization Schemes in Open‐shell Relativistic Density Functional Calculations , 2003 .

[33]  Tsunehiro Tanaka,et al.  A new heterogeneous olefin metathesis catalyst composed of rhenium oxide and mesoporous alumina , 2004 .

[34]  A. Müller,et al.  SCCC-MO-caIculations on the ions TcO4−, ReO4− and ReS4− , 1971 .

[35]  G. Deo,et al.  The selective catalytic reduction of Nox with NH3 over titania supported Rhenium Oxide Catalysts , 1996 .

[36]  A. Müller,et al.  Higher energy bands in the electronic absorption spectra of CrO42−, RuO4, OsO4, WS42−, MoS42−, WSe42− and MoSe42−. A note on the assignment of the electronic spectra of closed shell tetroxo-, tetrathio- and tetraselenoanions , 1971 .

[37]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[38]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[39]  Walter C. Ermler,et al.  Ab initio relativistic effective potentials with spin–orbit operators. IV. Cs through Rn , 1985 .

[40]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[41]  Werner Kutzelnigg,et al.  Quasirelativistic theory. II. Theory at matrix level. , 2007, The Journal of chemical physics.

[42]  H. Güdel,et al.  Excited-state energies and distortions of d0 transition metal tetraoxo complexes: A density functional study , 1997 .

[43]  Chengbu Liu,et al.  Time-dependent four-component relativistic density functional theory for excitation energies. , 2004, The Journal of chemical physics.

[44]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[45]  M. Symons,et al.  55. Structure and reactivity of the oxyanions of transition metals. Part VIII. Acidities and spectra of protonated oxyanions , 1960 .

[46]  Michael Dolg,et al.  The Beijing four-component density functional program package (BDF) and its application to EuO, EuS, YbO and YbS , 1997 .

[47]  W. Herrmann,et al.  Methyltrioxorhenium as Catalyst for Olefin Oxidation , 1991 .

[48]  Jacopo Tomasi,et al.  Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. , 2006, The Journal of chemical physics.

[49]  P. Jørgensen,et al.  Triplet excitation energies in the coupled cluster singles and doubles model using an explicit triplet spin coupled excitation space , 2000 .

[50]  G. Boyd Technetium and promethium , 1959 .

[51]  P. Schleyer Encyclopedia of computational chemistry , 1998 .