Hamilton-Jacobi-Bellman Quasi-Variational Inequality arising in an environmental problem and its numerical discretization

Abstract A Hamilton–Jacobi–Bellman Quasi-Variational Inequality (HJBQVI) for a river environmental restoration problem with wise-use of sediment is formulated and its mathematical properties are analyzed. A finite difference scheme with a penalization technique is then established for solving the HJBQVI. The scheme is free from any iterative solvers and is unconditionally stable and convergent in the viscosity sense under certain conditions. A demonstrative application example of the HJBQVI is finally presented.

[1]  Paul S. Kemp,et al.  The impacts of fine sediment on riverine fish , 2011 .

[2]  Xiaobing Feng,et al.  Local Discontinuous Galerkin Methods for One-Dimensional Second Order Fully Nonlinear Elliptic and Parabolic Equations , 2012, J. Sci. Comput..

[3]  X. Zhou,et al.  MEAN–VARIANCE PORTFOLIO OPTIMIZATION WITH STATE‐DEPENDENT RISK AVERSION , 2014 .

[4]  Huyen Pham,et al.  Continuous-time stochastic control and optimization with financial applications / Huyen Pham , 2009 .

[5]  Yumiharu Nakano,et al.  Convergence of meshfree collocation methods for fully nonlinear parabolic equations , 2014, Numerische Mathematik.

[6]  L. Fernandes,et al.  Modelling macroalgae using a 3D hydrodynamic-ecological model in a shallow, temperate estuary , 2005 .

[7]  Salvatore Federico,et al.  Viscosity Characterization of the Value Function of an Investment-Consumption Problem in Presence of an Illiquid Asset , 2014, J. Optim. Theory Appl..

[8]  Bernt Øksendal,et al.  Optimal Consumption and Portfolio with Both Fixed and Proportional Transaction Costs , 2001, SIAM J. Control. Optim..

[9]  Salvatore Manfreda,et al.  Comparison of different methods describing the peak runoff contributing areas during floods , 2017 .

[10]  Karl Kunisch,et al.  Polynomial Approximation of High-Dimensional Hamilton-Jacobi-Bellman Equations and Applications to Feedback Control of Semilinear Parabolic PDEs , 2017, SIAM J. Sci. Comput..

[11]  Lin Li,et al.  An Empirical Study for Transboundary Pollution of Three Gorges Reservoir Area with Emission Permits Trading , 2017, Neural Processing Letters.

[12]  B. Øksendal,et al.  Optimal harvesting from a population in a stochastic crowded environment. , 1997, Mathematical biosciences.

[13]  George Labahn,et al.  Inexact arithmetic considerations for direct control and penalty methods: American options under jump diffusion , 2013 .

[14]  Zhuliang Chen,et al.  A Semi-Lagrangian Approach for Natural Gas Storage Valuation and Optimal Operation , 2007, SIAM J. Sci. Comput..

[15]  Xin Guo,et al.  Impulse Control of Multidimensional Jump Diffusions , 2009, SIAM J. Control. Optim..

[16]  Shige Peng,et al.  Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations , 2006 .

[17]  Abner J. Salgado,et al.  Numerical analysis of strongly nonlinear PDEs * , 2016, Acta Numerica.

[18]  Song Wang An interior penalty method for a large-scale finite-dimensional nonlinear double obstacle problem , 2018, Applied Mathematical Modelling.

[19]  Koichi Unami,et al.  Mathematical Analysis on a Conforming Finite Element Scheme for Advection-Dispersion-Decay Equations on Connected Graphs , 2014 .

[20]  Shiqi Fan,et al.  Optimal investment problem under non-extensive statistical mechanics , 2018, Comput. Math. Appl..

[21]  Hidekazu Yoshioka,et al.  Finite Difference Computation of a Stochastic Aquaculture Problem Under Incomplete Information , 2018, FDM.

[22]  Walter K. Dodds,et al.  Factors associated with dominance of the filamentous green alga Cladophora glomerata , 1991 .

[23]  Suresh P. Sethi,et al.  Impulse Control with Random Reaction Periods: A Central Bank Intervention Problem , 2012, Oper. Res. Lett..

[24]  Jinchun Ye,et al.  Optimal life insurance purchase and consumption/investment under uncertain lifetime , 2007 .

[25]  J. Meyer,et al.  Standards for ecologically successful river restoration , 2005 .

[26]  Luca Ridolfi,et al.  Inter-species competition-facilitation in stochastic riparian vegetation dynamics. , 2013, Journal of theoretical biology.

[27]  Russell Steele,et al.  A physically based statistical model of sand abrasion effects on periphyton biomass , 2010 .

[28]  Wen Li,et al.  Pricing European options with proportional transaction costs and stochastic volatility using a penalty approach and a finite volume scheme , 2017, Comput. Math. Appl..

[29]  P. Armitage,et al.  Biological Effects of Fine Sediment in the Lotic Environment , 1997, Environmental management.

[30]  J. Yong,et al.  Finite horizon stochastic optimal switching and impulse controls with a viscosity solution approach , 1993 .

[31]  Elis Stefansson,et al.  Sequential alternating least squares for solving high dimensional linear Hamilton-Jacobi-Bellman equation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  M. Akhmouch,et al.  A time semi-exponentially fitted scheme for chemotaxis-growth models , 2017 .

[33]  Horst R. Thieme,et al.  Mathematics in Population Biology , 2003 .

[34]  James Clark,et al.  Individual-based modelling of adaptation in marine microbial populations using genetically defined physiological parameters , 2011 .

[35]  Zhuliang Chen,et al.  A numerical scheme for the impulse control formulation for pricing variable annuities with a guaranteed minimum withdrawal benefit (GMWB) , 2008, Numerische Mathematik.

[36]  J. Wang,et al.  Maximal Use of Central Differencing for Hamilton-Jacobi-Bellman PDEs in Finance , 2008, SIAM J. Numer. Anal..

[37]  Peter A. Forsyth,et al.  Analysis of a penalty method for pricing a guaranteed minimum withdrawal benefit (GMWB) , 2012 .

[38]  Wei Huang,et al.  Periphyton and ecosystem metabolism as indicators of river ecosystem response to environmental flow restoration in a flow-reduced river , 2017, Ecological Indicators.

[39]  Min Dai,et al.  Optimal Decision for Selling an Illiquid Stock , 2011, J. Optim. Theory Appl..

[40]  Ahmed Kettab,et al.  On modeling chronic detachment of periphyton in artificial rough, open channel flow , 2012 .

[41]  Maurizio Falcone,et al.  Numerical Methods for differential Games Based on Partial differential equations , 2006, IGTR.

[42]  Miglena N. Koleva,et al.  Fast computational approach to the Delta Greek of non-linear Black-Scholes equations , 2017, J. Comput. Appl. Math..

[43]  Jing Wang,et al.  A fitted finite volume method for real option valuation of risks in climate change , 2015, Comput. Math. Appl..

[44]  G. Barles,et al.  Deterministic Minimax Impulse Control , 2010 .

[45]  Q. Zhang,et al.  Selling a large stock position: a stochastic control approach with state constraints , 2007, Commun. Inf. Syst..

[46]  S. Higgins,et al.  Environmental Controls of Cladophora Growth Dynamics in Eastern Lake Erie: Application of the Cladophora Growth Model (CGM) , 2006 .

[47]  Rosa Trobajo,et al.  Regime shift from phytoplankton to macrophyte dominance in a large river: Top-down versus bottom-up effects. , 2012, The Science of the total environment.

[48]  Ophélie Fovet,et al.  Modelling periphyton in irrigation canals , 2010 .

[49]  Takashi Tashiro,et al.  Application of Population Dynamics Modeling to Habitat Evaluation - Growth of Some Species of Attached Algae and Its Detachment by Transported Sediment - , 2004 .

[50]  U. Uehlinger,et al.  Experimental floods cause ecosystem regime shift in a regulated river. , 2008, Ecological applications : a publication of the Ecological Society of America.

[51]  H. Yoshioka,et al.  Singular stochastic control model for algae growth management in dam downstream , 2018, Journal of biological dynamics.

[52]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[53]  M. Power,et al.  The Thirsty Eel: Summer and Winter Flow Thresholds that Tilt the Eel River of Northwestern California from Salmon-Supporting to Cyanobacterially Degraded States , 2015, Copeia.

[54]  Salah Boulaaras,et al.  On finite element approximation of system of parabolic quasi-variational inequalities related to stochastic control problems , 2016 .

[55]  Xin Guo,et al.  Impulse Control of Multidimensional Jump Diffusions in Finite Time Horizon , 2011, SIAM J. Control. Optim..

[56]  Janine B. Adams,et al.  Responses in a temporarily open/closed estuary to natural and artificial mouth breaching , 2016 .

[57]  Cornelis W. Oosterlee,et al.  An ENO-Based Method for Second-Order Equations and Application to the Control of Dike Levels , 2012, J. Sci. Comput..

[58]  Stéphane Goutte,et al.  Optimal strategy between extraction and storage of crude oil , 2019, Ann. Oper. Res..

[59]  Xin Guo,et al.  Smooth Fit Principle for Impulse Control of Multidimensional Diffusion Processes , 2009, SIAM J. Control. Optim..

[60]  Salah Boulaaras,et al.  The Theta Time Scheme Combined with a Finite-Element Spatial Approximation in the Evolutionary Hamilton–Jacobi–Bellman Equation with Linear Source Terms , 2014 .

[61]  Christoph Reisinger,et al.  A Penalty Method for the Numerical Solution of Hamilton-Jacobi-Bellman (HJB) Equations in Finance , 2011, SIAM J. Numer. Anal..

[62]  Brittany D. Froese Meshfree finite difference approximations for functions of the eigenvalues of the Hessian , 2015, Numerische Mathematik.

[63]  Adam M. Oberman,et al.  Convergent Difference Schemes for Degenerate Elliptic and Parabolic Equations: Hamilton-Jacobi Equations and Free Boundary Problems , 2006, SIAM J. Numer. Anal..

[64]  Hidekazu Yoshioka,et al.  An optimal stopping approach for onset of fish migration , 2018, Theory in Biosciences.

[65]  H. Yoshioka,et al.  A singular stochastic control model for sustainable population management of the fish-eating waterfowl Phalacrocorax carbo. , 2018, Journal of environmental management.

[66]  Vincenzo Capasso,et al.  An Introduction to Continuous-Time Stochastic Processes , 2004, Modeling and Simulation in Science, Engineering and Technology.

[67]  B. Øksendal Stochastic Differential Equations , 1985 .

[68]  Hans W. Paerl,et al.  Harmful Algal Blooms , 2015 .

[69]  Guanghua Chen,et al.  A numerical algorithm based on a variational iterative approximation for the discrete Hamilton-Jacobi-Bellman (HJB) equation , 2011, Comput. Math. Appl..

[70]  Matthias Ehrhardt,et al.  A nonstandard finite difference scheme for convection-diffusion equations having constant coefficients , 2013, Appl. Math. Comput..

[71]  Min Dai,et al.  GUARANTEED MINIMUM WITHDRAWAL BENEFIT IN VARIABLE ANNUITIES , 2007 .

[72]  M. Lapointe,et al.  The effects of sand abrasion of a predominantly stable stream bed on periphyton biomass losses , 2013 .

[73]  Sam D. Howison,et al.  The Effect of Nonsmooth Payoffs on the Penalty Approximation of American Options , 2010, SIAM J. Financial Math..

[74]  Endre Süli,et al.  Discontinuous Galerkin finite element methods for time-dependent Hamilton–Jacobi–Bellman equations with Cordes coefficients , 2014, Numerische Mathematik.

[75]  Q. Zhang,et al.  Stock Trading: An Optimal Selling Rule , 2001, SIAM J. Control. Optim..

[76]  Jingling Liu,et al.  Modeling the spatial and temporal dynamics of riparian vegetation induced by river flow fluctuation , 2018, Ecology and evolution.

[77]  Hidekazu Yoshioka,et al.  Robust stochastic control modeling of dam discharge to suppress overgrowth of downstream harmful algae , 2018 .

[78]  Mircea Grigoriu Noise-induced transitions for random versions of Verhulst model , 2014 .

[79]  Danping Li,et al.  A pair of optimal reinsurance–investment strategies in the two-sided exit framework , 2016 .

[80]  Wenfei Wang,et al.  A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation , 2017, Comput. Math. Appl..

[81]  Hitoshi Miyamoto,et al.  Tree population dynamics on a floodplain: A tradeoff between tree mortality and seedling recruitment induced by stochastic floods , 2016 .

[82]  Ophélie Fovet,et al.  A MODEL FOR FIXED ALGAE MANAGEMENT IN OPEN CHANNELS USING FLUSHING FLOWS , 2012 .

[83]  Vigirdas Mackevičius,et al.  Verhulst versus CIR , 2015 .

[84]  Ryan T. Bailey,et al.  Spatial and temporal variability of in-stream water quality parameter influence on dissolved oxygen and nitrate within a regional stream network , 2014 .

[85]  P. Forsyth,et al.  Numerical Methods for Nonlinear PDEs in Finance , 2012 .

[86]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[87]  Song Wang,et al.  Numerical solution of Hamilton–Jacobi–Bellman equations by an exponentially fitted finite volume method , 2006 .