The SLE loop via conformal welding of quantum disks

We prove that the SLE$_\kappa$ loop measure arises naturally from the conformal welding of two $\gamma$-Liouville quantum gravity (LQG) disks for $\gamma^2 = \kappa \in (0,4)$. The proof relies on our companion work on conformal welding of LQG disks and uses as an essential tool the concept of uniform embedding of LQG surfaces. Combining our result with work of Gwynne and Miller, we get that random quadrangulations decorated by a self-avoiding polygon converge in the scaling limit to the LQG sphere decorated by the SLE$_{8/3}$ loop. Our result is also a key input to recent work of the first and third coauthors on the integrability of the conformal loop ensemble.

[1]  Xin Sun,et al.  The moduli of annuli in random conformal geometry , 2022, 2203.12398.

[2]  S. Sheffield What is a random surface? , 2022, 2203.02470.

[3]  Xin Sun,et al.  Integrability of the conformal loop ensemble , 2021, 2107.01788.

[4]  Xin Sun,et al.  FZZ formula of boundary Liouville CFT via conformal welding , 2021, Journal of the European Mathematical Society.

[5]  Nina Holden,et al.  Integrability of SLE via conformal welding of random surfaces , 2021, Communications on Pure and Applied Mathematics.

[6]  Yilin Wang Large deviations of Schramm-Loewner evolutions: A survey , 2021, Probability Surveys.

[7]  M. Albenque,et al.  Scaling limit of triangulations of polygons , 2020 .

[8]  N. Holden,et al.  Conformal welding of quantum disks , 2020, Electronic Journal of Probability.

[9]  G. Remy,et al.  Integrability of Boundary Liouville Conformal Field Theory , 2020, Communications in Mathematical Physics.

[10]  N. Holden,et al.  Mating of trees for random planar maps and Liouville quantum gravity: a survey , 2019, 1910.04713.

[11]  Ewain Gwynne Random Surfaces and Liouville Quantum Gravity , 2019, 1908.05573.

[12]  V. Vargas,et al.  The semiclassical limit of Liouville conformal field theory , 2019, Annales de la Faculté des sciences de Toulouse : Mathématiques.

[13]  Yilin Wang,et al.  Interplay Between Loewner and Dirichlet Energies via Conformal Welding and Flow-Lines , 2019, Geometric and Functional Analysis.

[14]  Nina Holden,et al.  Conformal welding for critical Liouville quantum gravity , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[15]  Jason Miller,et al.  UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY , 2018, Journal of the Institute of Mathematics of Jussieu.

[16]  S. Benoist Natural parametrization of SLE: the Gaussian free field point of view , 2017, 1708.03801.

[17]  V. Vargas,et al.  Integrability of Liouville theory: proof of the DOZZ formula , 2017, Annals of Mathematics.

[18]  Dapeng Zhan SLE loop measures , 2017, Probability Theory and Related Fields.

[19]  Jason Miller,et al.  Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[20]  N. Curien,et al.  Self-Avoiding Walks on the UIPQ , 2016, Springer Proceedings in Mathematics & Statistics.

[21]  S. Sheffield,et al.  Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.

[22]  Jason Miller,et al.  Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2016, Annales Scientifiques de l'École Normale Supérieure.

[23]  Jason Miller,et al.  Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology , 2016, 1608.00954.

[24]  Scott Sheffield,et al.  Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.

[25]  S. Sheffield,et al.  Liouville quantum gravity and the Brownian map I: the QLE(8/3,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathr , 2019, Inventiones mathematicae.

[26]  Nathanael Berestycki,et al.  An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.

[27]  V. Vargas,et al.  Liouville quantum gravity on the unit disk , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[28]  V. Vargas,et al.  Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.

[29]  S. Sheffield,et al.  Liouville quantum gravity as a mating of trees , 2014, 1409.7055.

[30]  W. Werner,et al.  The nested simple conformal loop ensembles in the Riemann sphere , 2014, 1402.2433.

[31]  S. Sheffield,et al.  Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.

[32]  Richard Kenyon,et al.  Random curves on surfaces induced from the Laplacian determinant , 2012, 1211.6974.

[33]  G. Lawler,et al.  Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.

[34]  R. Abraham,et al.  A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces , 2012, 1202.5464.

[35]  Jean-Franccois Le Gall,et al.  Uniqueness and universality of the Brownian map , 2011, 1105.4842.

[36]  Gr'egory Miermont,et al.  The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.

[37]  S. Sheffield Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.

[38]  W. Werner,et al.  Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.

[39]  Anita Winter,et al.  Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees) , 2009 .

[40]  Scott Sheffield,et al.  Liouville quantum gravity and KPZ , 2008, 0808.1560.

[41]  Y. Suhov,et al.  On Malliavin measures, SLE, and CFT , 2006, math-ph/0609056.

[42]  S. Sheffield Exploration trees and conformal loop ensembles , 2006, math/0609167.

[43]  W. Werner The conformally invariant measure on self-avoiding loops , 2005, math/0511605.

[44]  O. Schramm,et al.  SLE coordinate changes , 2005, math/0505368.

[45]  V. Beffara The dimension of the SLE curves , 2002, math/0211322.

[46]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[47]  O. Schramm,et al.  Basic properties of SLE , 2001, math/0106036.

[48]  P. Malliavin The canonic diffusion above the diffeomorphism group of the circle , 1999 .

[49]  A. Dembo,et al.  Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.

[50]  Jason Miller,et al.  Submitted to the Annals of Probability METRIC GLUING OF BROWNIAN AND √ 8 / 3-LIOUVILLE QUANTUM GRAVITY SURFACES , 2018 .

[51]  Ellen Powell,et al.  Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .

[52]  G. Miermont Random Maps and Their Scaling Limits , 2009 .

[53]  Gregory F. Lawler,et al.  Conformally Invariant Processes in the Plane , 2005 .

[54]  M. Gromov Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .

[55]  W. G. Brown,et al.  Enumeration of Quadrangular Dissections of the Disk , 1965, Canadian Journal of Mathematics.

[56]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[57]  H. P. Annales de l'Institut Henri Poincaré , 1931, Nature.