The SLE loop via conformal welding of quantum disks
暂无分享,去创建一个
[1] Xin Sun,et al. The moduli of annuli in random conformal geometry , 2022, 2203.12398.
[2] S. Sheffield. What is a random surface? , 2022, 2203.02470.
[3] Xin Sun,et al. Integrability of the conformal loop ensemble , 2021, 2107.01788.
[4] Xin Sun,et al. FZZ formula of boundary Liouville CFT via conformal welding , 2021, Journal of the European Mathematical Society.
[5] Nina Holden,et al. Integrability of SLE via conformal welding of random surfaces , 2021, Communications on Pure and Applied Mathematics.
[6] Yilin Wang. Large deviations of Schramm-Loewner evolutions: A survey , 2021, Probability Surveys.
[7] M. Albenque,et al. Scaling limit of triangulations of polygons , 2020 .
[8] N. Holden,et al. Conformal welding of quantum disks , 2020, Electronic Journal of Probability.
[9] G. Remy,et al. Integrability of Boundary Liouville Conformal Field Theory , 2020, Communications in Mathematical Physics.
[10] N. Holden,et al. Mating of trees for random planar maps and Liouville quantum gravity: a survey , 2019, 1910.04713.
[11] Ewain Gwynne. Random Surfaces and Liouville Quantum Gravity , 2019, 1908.05573.
[12] V. Vargas,et al. The semiclassical limit of Liouville conformal field theory , 2019, Annales de la Faculté des sciences de Toulouse : Mathématiques.
[13] Yilin Wang,et al. Interplay Between Loewner and Dirichlet Energies via Conformal Welding and Flow-Lines , 2019, Geometric and Functional Analysis.
[14] Nina Holden,et al. Conformal welding for critical Liouville quantum gravity , 2018, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[15] Jason Miller,et al. UNIQUENESS OF THE WELDING PROBLEM FOR SLE AND LIOUVILLE QUANTUM GRAVITY , 2018, Journal of the Institute of Mathematics of Jussieu.
[16] S. Benoist. Natural parametrization of SLE: the Gaussian free field point of view , 2017, 1708.03801.
[17] V. Vargas,et al. Integrability of Liouville theory: proof of the DOZZ formula , 2017, Annals of Mathematics.
[18] Dapeng Zhan. SLE loop measures , 2017, Probability Theory and Related Fields.
[19] Jason Miller,et al. Convergence of the free Boltzmann quadrangulation with simple boundary to the Brownian disk , 2017, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[20] N. Curien,et al. Self-Avoiding Walks on the UIPQ , 2016, Springer Proceedings in Mathematics & Statistics.
[21] S. Sheffield,et al. Liouville quantum gravity and the Brownian map III: the conformal structure is determined , 2016, Probability Theory and Related Fields.
[22] Jason Miller,et al. Convergence of the self-avoiding walk on random quadrangulations to SLE$_{8/3}$ on $\sqrt{8/3}$-Liouville quantum gravity , 2016, Annales Scientifiques de l'École Normale Supérieure.
[23] Jason Miller,et al. Scaling limit of the uniform infinite half-plane quadrangulation in the Gromov-Hausdorff-Prokhorov-uniform topology , 2016, 1608.00954.
[24] Scott Sheffield,et al. Liouville quantum gravity and the Brownian map II: Geodesics and continuity of the embedding , 2016, The Annals of Probability.
[25] S. Sheffield,et al. Liouville quantum gravity and the Brownian map I: the QLE(8/3,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathr , 2019, Inventiones mathematicae.
[26] Nathanael Berestycki,et al. An elementary approach to Gaussian multiplicative chaos , 2015, 1506.09113.
[27] V. Vargas,et al. Liouville quantum gravity on the unit disk , 2015, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[28] V. Vargas,et al. Liouville Quantum Gravity on the Riemann Sphere , 2014, Communications in Mathematical Physics.
[29] S. Sheffield,et al. Liouville quantum gravity as a mating of trees , 2014, 1409.7055.
[30] W. Werner,et al. The nested simple conformal loop ensembles in the Riemann sphere , 2014, 1402.2433.
[31] S. Sheffield,et al. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees , 2013, 1302.4738.
[32] Richard Kenyon,et al. Random curves on surfaces induced from the Laplacian determinant , 2012, 1211.6974.
[33] G. Lawler,et al. Minkowski content and natural parameterization for the Schramm–Loewner evolution , 2012, 1211.4146.
[34] R. Abraham,et al. A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces , 2012, 1202.5464.
[35] Jean-Franccois Le Gall,et al. Uniqueness and universality of the Brownian map , 2011, 1105.4842.
[36] Gr'egory Miermont,et al. The Brownian map is the scaling limit of uniform random plane quadrangulations , 2011, 1104.1606.
[37] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper , 2010, 1012.4797.
[38] W. Werner,et al. Conformal loop ensembles: the Markovian characterization and the loop-soup construction , 2010, 1006.2374.
[39] Anita Winter,et al. Convergence in distribution of random metric measure spaces (Λ-coalescent measure trees) , 2009 .
[40] Scott Sheffield,et al. Liouville quantum gravity and KPZ , 2008, 0808.1560.
[41] Y. Suhov,et al. On Malliavin measures, SLE, and CFT , 2006, math-ph/0609056.
[42] S. Sheffield. Exploration trees and conformal loop ensembles , 2006, math/0609167.
[43] W. Werner. The conformally invariant measure on self-avoiding loops , 2005, math/0511605.
[44] O. Schramm,et al. SLE coordinate changes , 2005, math/0505368.
[45] V. Beffara. The dimension of the SLE curves , 2002, math/0211322.
[46] D. Burago,et al. A Course in Metric Geometry , 2001 .
[47] O. Schramm,et al. Basic properties of SLE , 2001, math/0106036.
[48] P. Malliavin. The canonic diffusion above the diffeomorphism group of the circle , 1999 .
[49] A. Dembo,et al. Liouville quantum gravity and the Brownian map I: The QLE(8/3,0) metric , 2015, 1507.00719.
[50] Jason Miller,et al. Submitted to the Annals of Probability METRIC GLUING OF BROWNIAN AND √ 8 / 3-LIOUVILLE QUANTUM GRAVITY SURFACES , 2018 .
[51] Ellen Powell,et al. Introduction to the Gaussian Free Field and Liouville Quantum Gravity , 2015 .
[52] G. Miermont. Random Maps and Their Scaling Limits , 2009 .
[53] Gregory F. Lawler,et al. Conformally Invariant Processes in the Plane , 2005 .
[54] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces , 1999 .
[55] W. G. Brown,et al. Enumeration of Quadrangular Dissections of the Disk , 1965, Canadian Journal of Mathematics.
[56] W. T. Tutte. A Census of Planar Maps , 1963, Canadian Journal of Mathematics.
[57] H. P.. Annales de l'Institut Henri Poincaré , 1931, Nature.