Dynamic variational preferences

We introduce and axiomatize dynamic variational preferences, the dynamic version of the variational preferences we axiomatized in [F. Maccheroni, M. Marinacci, A. Rustichini, Ambiguity aversion, robustness, and the variational representation of preferences, Mimeo, 2004], which generalize the multiple priors preferences of Gilboa and Schmeidler [Maxmin expected utility with a non-unique prior, J. Math. Econ. 18 (1989) 141–153], and include the Multiplier Preferences inspired by robust control and first used in macroeconomics by Hansen and Sargent (see [L.P. Hansen, T.J. Sargent, Robust control and model uncertainty, Amer. Econ. Rev. 91 (2001) 60–66]), as well as the classic Mean Variance Preferences of Markovitz and Tobin. We provide a condition that makes dynamic variational preferences time consistent, and their representation recursive. This gives them the analytical tractability needed in macroeconomic and financial applications. A corollary of our results is that Multiplier Preferences are time consistent, but Mean Variance Preferences are not.

[1]  A. Rustichini,et al.  Ambiguity Aversion, Robustness, and the Variational Representation of Preferences , 2006 .

[2]  Josef Perner,et al.  The role of competition and knowledge in the Ellsberg task , 2003 .

[3]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[4]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[5]  Tan Wang,et al.  Conditional preferences and updating , 2003, J. Econ. Theory.

[6]  James Peck,et al.  Ambiguity aversion, games against nature, and dynamic consistency , 2008, Games Econ. Behav..

[7]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[8]  I. Vajda,et al.  Convex Statistical Distances , 2018, Statistical Inference for Engineers and Data Scientists.

[9]  Lars Peter Hansen,et al.  Robust control and model misspecification , 2006, J. Econ. Theory.

[10]  Takashi Hayashi Quasi-stationary cardinal utility and present bias , 2003, J. Econ. Theory.

[11]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[12]  Larry G. Epstein,et al.  Intertemporal Asset Pricing Under Knightian Uncertainty , 1994 .

[13]  A. Rustichini,et al.  Ambiguity Aversion, Malevolent Nature, and the Variational Representation of Preferences , 2004 .

[14]  Aldo Rustichini Emotion and Reason in Making Decisions , 2005, Science.

[15]  Eran Hanany,et al.  Updating Preferences with Multiple Priors , 2006 .

[16]  Katsutoshi Wakai A note on recursive multiple-priors , 2007, J. Econ. Theory.

[17]  Colin Camerer,et al.  Neural Systems Responding to Degrees of Uncertainty in Human Decision-Making , 2005, Science.

[18]  Costis Skiadas Robust control and recursive utility , 2003, Finance Stochastics.

[19]  Gideon Keren,et al.  On the robustness and possible accounts of ambiguity aversion , 1999 .

[20]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[21]  Sujoy Mukerji,et al.  Ambiguity Aversion and Incompleteness of Financial Markets , 2001 .

[22]  Takashi Hayashi,et al.  Intertemporal substitution, risk aversion and ambiguity aversion , 2005 .

[23]  Giacomo Scandolo,et al.  Conditional and dynamic convex risk measures , 2005, Finance Stochastics.

[24]  Massimo Marinacci,et al.  PORTFOLIO SELECTION WITH MONOTONE MEAN‐VARIANCE PREFERENCES , 2009 .

[25]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[26]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[27]  Sergiu Hart,et al.  A Neo2 bayesian foundation of the maxmin value for two-person zero-sum games , 1994 .

[28]  Marciano M. Siniscalchi,et al.  Dynamic Choice Under Ambiguity , 2006 .

[29]  Massimo Marinacci,et al.  Ambiguity from the Differential Viewpoint , 2002 .

[30]  S. Werlang,et al.  Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio , 1992 .