Nonlinear thermovoltage and thermocurrent in quantum dots

Quantum dots are model systems for quantum thermoelectric behavior because of their ability to control and measure the effects of electron-energy filtering and quantum confinement on thermoelectric properties. Interestingly, nonlinear thermoelectric properties of such small systems can modify the efficiency of thermoelectric power conversion. Using quantum dots embedded in semiconductor nanowires, we measure thermovoltage and thermocurrent that are strongly nonlinear in the applied thermal bias. We show that most of the observed nonlinear effects can be understood in terms of a renormalization of the quantum-dot energy levels as a function of applied thermal bias and provide a theoretical model of the nonlinear thermovoltage taking renormalization into account. Furthermore, we propose a theory that explains a possible source of the observed, pronounced renormalization effect by the melting of Kondo correlations in the mixed-valence regime. The ability to control nonlinear thermoelectric behavior expands the range in which quantum thermoelectric effects may be used for efficient energy conversion.

[1]  K. Dick,et al.  Large thermoelectric power factor enhancement observed in InAs nanowires. , 2013, Nano letters.

[2]  R. López,et al.  Nonlinear heat transport in mesoscopic conductors: Rectification, Peltier effect, and Wiedemann-Franz law , 2013, 1302.5557.

[3]  Markus Buttiker,et al.  Powerful and efficient energy harvester with resonant-tunneling quantum dots , 2013, 1302.3366.

[4]  P. Jacquod,et al.  Scattering theory of nonlinear thermoelectricity in quantum coherent conductors , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  Robert S. Whitney,et al.  Thermodynamic and quantum bounds on nonlinear DC thermoelectric transport , 2012, 1211.4737.

[6]  David Sánchez,et al.  Scattering theory of nonlinear thermoelectric transport. , 2012, Physical review letters.

[7]  Robert S. Whitney,et al.  Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling , 2012, 1208.6130.

[8]  Andreas Wacker,et al.  Heat flow in InAs/InP heterostructure nanowires , 2012, 1209.4940.

[9]  P. Lombardo,et al.  Kondo physics and orbital degeneracy interact to boost thermoelectrics on the nanoscale , 2012, 1204.5360.

[10]  H. Linke,et al.  Lineshape of the thermopower of quantum dots , 2011, 1110.0352.

[11]  I. Sadovskyy,et al.  Scattering matrix approach to the description of quantum electron transport , 2014, 1408.1966.

[12]  L. Wernersson,et al.  InSb Nanowire Field-Effect Transistors and Quantum-Dot Devices , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  H. Linke,et al.  Thermoelectric efficiency at maximum power in low-dimensional systems , 2010, 1010.1375.

[14]  M. Tsaousidou,et al.  Thermoelectric properties of a weakly coupled quantum dot: enhanced thermoelectric efficiency , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  X. Zianni Thermoelectric Efficiency of a Quantum Dot in the Single-Electron Transistor Configuration , 2010 .

[16]  K. Flensberg,et al.  Nonlinear thermoelectric properties of molecular junctions with vibrational coupling , 2010, 1004.4500.

[17]  V. Zlatić,et al.  Thermoelectric transport through strongly correlated quantum dots , 2010, 1004.1519.

[18]  A. Clerk,et al.  Energy levels of few-electron quantum dots imaged and characterized by atomic force microscopy , 2009, Proceedings of the National Academy of Sciences.

[19]  H. Linke,et al.  Measuring temperature gradients over nanometer length scales. , 2009, Nano letters.

[20]  E. Hoffmann The thermoelectric efficiency of quantum dots in InAs/InP nanowires , 2009 .

[21]  Massimiliano Esposito,et al.  Thermoelectric efficiency at maximum power in a quantum dot , 2008, 0808.0216.

[22]  Philippe Caroff,et al.  High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.

[23]  S. Mukerjee,et al.  Optimal thermoelectric figure of merit of a molecular junction , 2008, 0805.3374.

[24]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[25]  X. Zianni Coulomb oscillations in the electron thermal conductance of a dot in the linear regime , 2007 .

[26]  A. Toropov,et al.  Coulomb blockade and the thermopower of a suspended quantum dot , 2006 .

[27]  Jian Wang,et al.  NONLINEAR THERMOELECTRIC TRANSPORT THROUGH A DOUBLE BARRIER STRUCTURE , 2006 .

[28]  H. Linke,et al.  Concept study for a high-efficiency nanowire based thermoelectric , 2006, cond-mat/0601110.

[29]  A. Aharony,et al.  Applicability of the equations-of-motion technique for quantum dots , 2005, cond-mat/0511656.

[30]  Lars Samuelson,et al.  Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .

[31]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[32]  H. Linke,et al.  Reversible quantum brownian heat engines for electrons. , 2002, Physical review letters.

[33]  R. Fazio,et al.  Thermoelectric effects in Kondo-correlated quantum dots , 2001, cond-mat/0105217.

[34]  Hongqi Xu,et al.  A QUANTUM DOT RATCHET : EXPERIMENT AND THEORY , 1998 .

[35]  G. Mahan,et al.  The best thermoelectric. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M. Buttiker,et al.  Gauge-invariant nonlinear electric transport in mesoscopic conductors , 1996, cond-mat/9604029.

[37]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[38]  Hal Edwards,et al.  A quantum‐dot refrigerator , 1993 .

[39]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[40]  Mildred S. Dresselhaus,et al.  Effect of quantum-well structures on the thermoelectric figure of merit. , 1993, Physical review. B, Condensed matter.

[41]  C. Beenakker,et al.  Coulomb-Blockade Oscillations in the Thermopower of a Quantum Dot , 1993 .

[42]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[43]  Lee,et al.  Low-temperature transport through a quantum dot: The Anderson model out of equilibrium. , 1992, Physical review letters.

[44]  M. Springford The Kondo problem to heavy fermions , 1993 .

[45]  C. Beenakker,et al.  Theory of the thermopower of a quantum dot. , 1992, Physical review. B, Condensed matter.

[46]  Meir,et al.  Landauer formula for the current through an interacting electron region. , 1992, Physical review letters.

[47]  D. Averin,et al.  Theory of single-electron charging of quantum wells and dots. , 1991, Physical review. B, Condensed matter.

[48]  C. Beenakker,et al.  Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. , 1991, Physical review. B, Condensed matter.

[49]  Lee,et al.  Transport through a strongly interacting electron system: Theory of periodic conductance oscillations. , 1991, Physical review letters.

[50]  Kastner,et al.  Single-electron charging and periodic conductance resonances in GaAs nanostructures. , 1990, Physical review letters.

[51]  A. M. Tsvelick,et al.  Exact solution of the Anderson model: I , 1983 .

[52]  F. Haldane Erratum: Scaling theory of the asymmetric Anderson model. (Physical Review Letters (1978) 40, 13) , 1978 .