Red blood cells in retinal vascular disorders.

[1]  J. Fuehr [HEMATOCRIT]. , 2020, Therapie der Gegenwart.

[2]  Giovanni Volpe,et al.  Optical Tweezers: Principles and Applications , 2016 .

[3]  D. Holmes,et al.  Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics , 2014, PloS one.

[4]  D. Kell,et al.  Diagnostic morphology: biophysical indicators for iron-driven inflammatory diseases. , 2014, Integrative biology : quantitative biosciences from nano to macro.

[5]  O. N. Mesquita,et al.  Total three-dimensional imaging of phase objects using defocusing microscopy: Application to red blood cells , 2014, 1404.2968.

[6]  Stavroula Balabani,et al.  Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel , 2014, Biomechanics and modeling in mechanobiology.

[7]  Peng Kai Ong,et al.  Effect of Erythrocyte Aggregation on Spatiotemporal Variations in Cell‐Free Layer Formation Near on Arteriolar Bifurcation , 2013, Microcirculation.

[8]  M. Socol,et al.  Full dynamics of a red blood cell in shear flow , 2012, Proceedings of the National Academy of Sciences.

[9]  Terry E. Moschandreou,et al.  Blood Cell - An Overview of Studies in Hematology , 2012 .

[10]  E. Kaliviotis,et al.  The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. , 2012, Biomicrofluidics.

[11]  Y. Colin,et al.  Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion , 2011, Journal of thrombosis and haemostasis : JTH.

[12]  Sergey S Shevkoplyas,et al.  Systemic lupus erythematosus serum deposits C4d on red blood cells, decreases red blood cell membrane deformability, and promotes nitric oxide production. , 2011, Arthritis and rheumatism.

[13]  Yunlong Sheng,et al.  Dynamic deformation of red blood cell in dual-trap optical tweezers. , 2010, Optics express.

[14]  Gabriel Popescu,et al.  Measurement of red blood cell mechanics during morphological changes , 2010, Proceedings of the National Academy of Sciences.

[15]  G. Lippi,et al.  Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients. , 2009, Archives of pathology & laboratory medicine.

[16]  O. Baskurt,et al.  Photometric measurements of red blood cell aggregation: light transmission versus light reflectance. , 2009, Journal of biomedical optics.

[17]  Michael Yianneskis,et al.  Coupled human erythrocyte velocity field and aggregation measurements at physiological haematocrit levels. , 2009, Journal of biomechanics.

[18]  W. T. Cade,et al.  Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting , 2008, Physical Therapy.

[19]  S. Yedgar,et al.  RBC Adhesion to Vascular Endothelial Cells: More Potent than RBC Aggregation in Inducing Circulatory Disorders , 2008, Microcirculation.

[20]  O. Baskurt,et al.  RBC Aggregation: More Important than RBC Adhesion to Endothelial Cells as a Determinant of In Vivo Blood Flow in Health and Disease , 2008, Microcirculation.

[21]  R. Hebbel Adhesion of sickle red cells to endothelium: myths and future directions. , 2008, Transfusion clinique et biologique : journal de la Societe francaise de transfusion sanguine.

[22]  B. Davis,et al.  Relation Between Red Blood Cell Distribution Width and Cardiovascular Event Rate in People With Coronary Disease , 2008, Circulation.

[23]  E. Kaliviotis,et al.  On the effect of dynamic flow conditions on blood microstructure investigated with optical shearing microscopy and rheometry , 2007, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[24]  Ji-Eun Lee,et al.  Isolated monocular visual loss as an initial manifestation of polycythemia vera , 2007, Journal of the Neurological Sciences.

[25]  M. Pfeffer,et al.  Red cell distribution width as a novel prognostic marker in heart failure: data from the CHARM Program and the Duke Databank. , 2007, Journal of the American College of Cardiology.

[26]  W. Malorni,et al.  The microenvironment can shift erythrocytes from a friendly to a harmful behavior: pathogenetic implications for vascular diseases. , 2007, Cardiovascular research.

[27]  S. Yedgar,et al.  Role of red blood cell flow behavior in hemodynamics and hemostasis , 2007, Expert review of cardiovascular therapy.

[28]  F. España,et al.  Dyslipidaemia in Behçet’s disease as a thrombotic risk factor , 2006, Annals of the rheumatic diseases.

[29]  Theo Arts,et al.  Wall Shear Stress – an Important Determinant of Endothelial Cell Function and Structure – in the Arterial System in vivo , 2006, Journal of Vascular Research.

[30]  H. Daneschvar,et al.  How to interpret and pursue an abnormal complete blood cell count in adults. , 2005, Mayo Clinic proceedings.

[31]  C. Gibson,et al.  Association between hematological parameters and high-density lipoprotein cholesterol , 2005, Current opinion in cardiology.

[32]  I. Shapira,et al.  The erythrosense as a real-time biomarker to reveal the presence of enhanced red blood cell aggregability in atherothrombosis. , 2005, American journal of therapeutics.

[33]  Aleksander S Popel,et al.  Aggregate formation of erythrocytes in postcapillary venules. , 2005, American journal of physiology. Heart and circulatory physiology.

[34]  I. Shapira,et al.  Erythrocyte adhesiveness/aggregation: a novel biomarker for the detection of low-grade internal inflammation in individuals with atherothrombotic risk factors and proven vascular disease. , 2005, American heart journal.

[35]  H. H. Lipowsky,et al.  Microvascular Rheology and Hemodynamics , 2005, Microcirculation.

[36]  Julian Moger,et al.  Measuring red blood cell flow dynamics in a glass capillary using Doppler optical coherence tomography and Doppler amplitude optical coherence tomography. , 2004, Journal of biomedical optics.

[37]  T. Lai,et al.  Choroidal vascular remodelling in central serous chorioretinopathy after indocyanine green guided photodynamic therapy with verteporfin: a novel treatment at the primary disease level , 2003, The British journal of ophthalmology.

[38]  O. Baskurt,et al.  Blood rheology and hemodynamics. , 2003, Seminars in thrombosis and hemostasis.

[39]  Gregory Barshtein,et al.  The red blood cell in vascular occlusion , 2002, Pathophysiology of Haemostasis and Thrombosis.

[40]  R. Hebbel Blockade of adhesion of sickle cells to endothelium by monoclonal antibodies. , 2000, The New England journal of medicine.

[41]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[42]  R. Hebbel Adhesive interactions of sickle erythrocytes with endothelium. , 1997, The Journal of clinical investigation.

[43]  V. Kalra,et al.  Diabetic RBC-induced oxidant stress leads to transendothelial migration of monocyte-like HL-60 cells. , 1997, The American journal of physiology.

[44]  H J Meiselman,et al.  Cellular determinants of low-shear blood viscosity. , 1997, Biorheology.

[45]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[46]  J. Moake,et al.  Platelets and shear stress. , 1996, Blood.

[47]  G. Coscas,et al.  Elevated erythrocyte aggregation in patients with central retinal vein occlusion and without conventional risk factors. , 1994, Ophthalmology.

[48]  T C Fisher,et al.  Decreased Polymorphonuclear Leukocyte Deformability in NIDDM , 1994, Diabetes Care.

[49]  H. Witas,et al.  The association between erythrocyte internal viscosity, protein non-enzymatic glycosylation and erythrocyte membrane dynamic properties in juvenile diabetes mellitus. , 1992, International journal of experimental pathology.

[50]  Goldsmith,et al.  Robin Fåhraeus: evolution of his concepts in cardiovascular physiology. , 1989, The American journal of physiology.

[51]  A. Pries,et al.  Red cell distribution at microvascular bifurcations. , 1989, Microvascular research.

[52]  A. Copley The Robin Fåhraeus memorial lecture. Robin Fåhraeus--the scientist and the person. , 1989, Upsala journal of medical sciences.

[53]  R M Heethaar,et al.  Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. , 1988, Arteriosclerosis.

[54]  P. Gaehtgens,et al.  Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. , 1987, The American journal of physiology.

[55]  R. Schwartz,et al.  The adhesive sickle erythrocyte: cause and consequence of abnormal interactions with endothelium, monocytes/macrophages and model membranes. , 1985, Clinics in haematology.

[56]  R. Heethaar,et al.  Red blood cell deformability influences platelets--vessel wall interaction in flowing blood. , 1984, Blood.

[57]  J. Laragh,et al.  Elevated blood viscosity in patients with borderline essential hypertension. , 1983, Hypertension.

[58]  P. S. Ramalho Microcirculation and hemorheology. , 1983, Acta medica portuguesa.

[59]  S Chien,et al.  Direct relationship between blood pressure and blood viscosity in normal and hypertensive subjects. Role of fibrinogen and concentration. , 1981, The American journal of medicine.

[60]  N. Mohandas,et al.  The role of membrane-associated enzymes in regulation of erythrocyte shape and deformability. , 1981, Clinics in Haematology.

[61]  N. Mohandas,et al.  Analysis of factors regulating erythrocyte deformability. , 1980, The Journal of clinical investigation.

[62]  J. Dormandy,et al.  RED-CELL DEFORMABILITY , 1976, The Lancet.

[63]  N. Mohandas,et al.  [Red cell deformability, importance of its measurement in clinical medicine]. , 1975, Schweizerische medizinische Wochenschrift.

[64]  B. Zweifach,et al.  Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. , 1975, The American journal of physiology.

[65]  N. Mohandas,et al.  [Continuous measurement of cellular deformability, using a diffractometric method]. , 1974, Comptes rendus hebdomadaires des seances de l'Academie des sciences. Serie D: Sciences naturelles.

[66]  R. Wells,et al.  Red cell deformation and fluidity of concentrated cell suspensions. , 1969, Journal of applied physiology.

[67]  Subin Solomen,et al.  Biomechanics of Circulation , 2018 .

[68]  B. Burkett An introduction to the human body , 2016 .

[69]  A. Vayá,et al.  Haematological, biochemical and inflammatory parameters in inactive Behçet's disease. Its association with red blood cell distribution width. , 2014, Clinical hemorheology and microcirculation.

[70]  F. España,et al.  Mean platelet volume does not seem to relate to thrombosis or posterior uveitis in Behçet's disease. , 2013, Clinical hemorheology and microcirculation.

[71]  M. Wautier,et al.  [Molecular basis of red blood cell adhesion to endothelium]. , 2011, Annales pharmaceutiques francaises.

[72]  J. Wautier,et al.  [Molecular basis of red blood cell adhesion to endothelium]. , 2011, Annales pharmaceutiques francaises.

[73]  P. Cabrales,et al.  Microvascular benefits of increasing plasma viscosity and maintaining blood viscosity: counterintuitive experimental findings. , 2009, Biorheology.

[74]  M. Intaglietta Increased blood viscosity: disease, adaptation or treatment? , 2009, Clinical hemorheology and microcirculation.

[75]  Herbert J Meiselman,et al.  Red blood cell aggregation: 45 years being curious. , 2009, Biorheology.

[76]  T. Gori,et al.  The evolution of the meaning of blood hyperviscosity in cardiovascular physiopathology: should we reinterpret Poiseuille? , 2009, Clinical hemorheology and microcirculation.

[77]  James Rogers,et al.  An introduction to Cardiovascular Physiology , 2009 .

[78]  Theo Arts,et al.  Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory. , 2006, Journal of vascular research.

[79]  A. Erdem,et al.  Decreased erythrocyte deformability in Behçet's disease. , 2005, Clinical hemorheology and microcirculation.

[80]  D. Corella,et al.  Haemorheological alterations in Behçet's disease are not related to a tendency for venous thrombosis. , 2005, Thrombosis research.

[81]  M. Reim,et al.  Rheologic findings in patients with acute central retinal artery occlusion , 2005, Graefe's Archive for Clinical and Experimental Ophthalmology.

[82]  S. Suresha,et al.  Mechanics of the human red blood cell deformed by optical tweezers , 2003 .

[83]  G. Schmid-Schönbein,et al.  Biomechanics of microcirculatory blood perfusion. , 1999, Annual review of biomedical engineering.

[84]  J. Stoltz,et al.  Measurement of erythrocyte deformability by two laser diffraction methods. , 1999, Clinical hemorheology and microcirculation.

[85]  G. Cokelet,et al.  Poiseuille Award Lecture. Viscometric, in vitro and in vivo blood viscosity relationships: how are they related? , 1999, Biorheology.

[86]  D. Jehle,et al.  The red blood cell distribution width. , 1991, The Journal of emergency medicine.

[87]  Y. Fung Micro- and Macrocirculation , 1990 .

[88]  C. L. Conley Polycythemia vera. , 1990, JAMA.

[89]  A. Copley The Robin Fåhraeus memorial lecture. Robin Fåhraeus--the scientist and the person. , 1989, Thrombosis research.

[90]  B. Fenton,et al.  Nonuniform red cell distribution in 20 to 100 μm bifurcations , 1985 .

[91]  R T Carr,et al.  Nonuniform red cell distribution in 20 to 100 micrometers bifurcations. , 1985, Microvascular research.

[92]  R. Heethaar,et al.  Red blood cell size is important for adherence of blood platelets to artery subendothelium. , 1983, Blood.

[93]  J. White,et al.  Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: possible mechanism for microvascular occlusion in sickle cell disease. , 1980, The Journal of clinical investigation.

[94]  C. Féo,et al.  Automated ektacytometry: a new method of measuring red cell deformability and red cell indices. , 1980, Blood cells.

[95]  R. Wells,et al.  Analysis of viscous deformation of the red cell and its effect upon microvascular flow. , 1969, Bibliotheca anatomica.