Actuator fault detection and isolation on a quadrotor unmanned aerial vehicle modeled as a linear parameter-varying system

This paper presents the design of a fault detection and diagnosis system for a quadrotor unmanned aerial vehicle under partial or total actuator fault. In order to control the quadrotor, the dynamic system is divided in two subsystems driven by the translational and the rotational dynamics, where the rotational subsystem is based on a linear parameter-varying model. A robust linear parameter-varying observer applied to the rotational subsystem is considered to detect actuator faults, which can occur as total failures (loss of a propeller or a motor) or partial faults (degradation). Furthermore, fault diagnosis is done by analyzing the displacements of the roll and pitch angles. Numerical experiments are carried out in order to illustrate the effectiveness of the proposed methodology.

[1]  Youmin Zhang,et al.  Development of advanced FDD and FTC techniques with application to an unmanned quadrotor helicopter testbed , 2013, J. Frankl. Inst..

[2]  A. El Hajjaji,et al.  Vehicle dynamics and road curvature estimation for lane departure warning system using robust fuzzy observers: experimental validation , 2015 .

[3]  Youmin Zhang,et al.  Flatness-Based Trajectory Planning/Replanning for a Quadrotor Unmanned Aerial Vehicle , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[4]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[5]  Jianbin Qiu,et al.  A Switched System Approach to Exponential Stabilization of Sampled-Data T–S Fuzzy Systems With Packet Dropouts , 2016, IEEE Transactions on Cybernetics.

[6]  Pramod P. Khargonekar,et al.  On the control of linear systems whose coefficients are functions of parameters , 1984 .

[7]  J. Daafouz,et al.  Parameter-dependent state observer design for affine LPV systems , 2001 .

[8]  Vicenç Puig,et al.  Fault-tolerant control strategy for actuator faults using LPV techniques: Application to a two degree of freedom helicopter , 2012, Int. J. Appl. Math. Comput. Sci..

[9]  Rogelio Lozano,et al.  6-DOF hovering controller design of the Quad Tiltrotor aircraft: Simulations and experiments , 2014, 53rd IEEE Conference on Decision and Control.

[10]  José A. De Doná,et al.  Robust fault estimation and compensation for LPV systems under actuator and sensor faults , 2015, Autom..

[11]  Youmin Zhang,et al.  Fault Tolerant Model Predictive Control of Quad-Rotor Helicopters with Actuator Fault Estimation , 2011 .

[12]  Junmin Wang,et al.  $\mathcal{H}_{\infty}$ Observer Design for LPV Systems With Uncertain Measurements on Scheduling Variables: Application to an Electric Ground Vehicle , 2016, IEEE/ASME Transactions on Mechatronics.

[13]  Jeff S. Shamma,et al.  An Overview of LPV Systems , 2012 .

[14]  B. Saha,et al.  A Fault Detection and Reconfigurable Control Architecture for Unmanned Aerial Vehicles , 2005, 2005 IEEE Aerospace Conference.

[15]  Emmanuel Prempain,et al.  Switched fault tolerant control for a quadrotor UAV , 2017 .

[16]  Didier Theilliol,et al.  Linear Parameter Varying control synthesis: State feedback versus H∞ technique with application to quadrotor UA V , 2014, 2014 International Conference on Unmanned Aircraft Systems (ICUAS).

[17]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[18]  Rogerio A. Enríquez-Caldera,et al.  LQR control for a quadrotor using unit quaternions: Modeling and simulation , 2013, CONIELECOMP 2013, 23rd International Conference on Electronics, Communications and Computing.

[19]  Yury V. Morozov Emergency Control of a Quadrocopter in Case of Failure of Two Symmetric Propellers , 2018, Autom. Remote. Control..

[20]  Rogelio Lozano,et al.  DYNAMIC MODELLING AND CONFIGURATION STABILIZATION FOR AN X4-FLYER. , 2002 .

[21]  Vincenzo Lippiello,et al.  Emergency landing for a quadrotor in case of a propeller failure: A backstepping approach , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Peter I. Corke,et al.  Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor , 2012, IEEE Robotics & Automation Magazine.

[23]  Damiano Rotondo,et al.  Robust Quasi–LPV Model Reference FTC of a Quadrotor Uav Subject to Actuator Faults , 2015, Int. J. Appl. Math. Comput. Sci..

[24]  Youmin Zhang,et al.  Active Fault-Tolerant Control of Unmanned Quadrotor Helicopter Using Linear Parameter Varying Technique , 2017, J. Intell. Robotic Syst..

[25]  Feng Xu,et al.  Set-theoretic robust FD of UAV nonlinear longitudinal motion under discrete-time quasi-LPV framework , 2016, 2016 35th Chinese Control Conference (CCC).

[26]  Moussa Boukhnifer,et al.  Robust fault tolerant tracking controller design for vehicle dynamics: a descriptor approach , 2015 .

[27]  Halim Alwi,et al.  Fault Reconstruction for a Quadrotor Using an LPV Sliding Mode Observer1 , 2015 .

[28]  Guillaume Sanahuja,et al.  Fault diagnosis and fault-tolerant control strategy for rotor failure in an octorotor , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[29]  Rongrong Wang,et al.  Robust H∞ output-feedback control for path following of autonomous ground vehicles , 2016 .

[30]  Bálint Vanek,et al.  Supervisory fault tolerant control of the GTM UAV using LPV methods , 2013 .

[31]  Paulo Rosa,et al.  Fault detection and isolation of LPV systems using set-valued observers: An application to a fixed-wing aircraft , 2013 .

[32]  Mirza Tariq Hamayun,et al.  Output integral sliding mode fault tolerant control scheme for LPV plants by incorporating control allocation , 2017 .

[33]  Damiano Rotondo,et al.  Detection of icing and actuators faults in the longitudinal dynamics of small UAVs using an LPV proportional integral unknown input observer , 2016, 2016 3rd Conference on Control and Fault-Tolerant Systems (SysTol).

[34]  Samir Bouabdallah,et al.  Design and control of quadrotors with application to autonomous flying , 2007 .

[35]  Kazuo Tanaka,et al.  Fuzzy modeling via sector nonlinearity concept , 2003 .

[36]  Raffaello D'Andrea,et al.  Stability and control of a quadrocopter despite the complete loss of one, two, or three propellers , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Rogelio Lozano,et al.  Fault estimation for a quad-rotor MAV using a polynomial observer , 2013 .