Fuzzy Uncertainty in Random Variable Generation: An α-Cut Approach

This paper presents a method for random variable generation based on \( \alpha \)-cuts. The proposed method uses convex fuzzy numbers with single-element core and uniformly distributed random numbers to obtain random variables, mainly used in simulation models.

[1]  Richard Bellman,et al.  Decision-making in fuzzy environment , 2012 .

[2]  Juan Carlos Figueroa García,et al.  A Simulation Study on Fuzzy Markov Chains , 2008, ICIC.

[3]  Yurilev Chalco-Cano,et al.  Distance measures for Interval Type-2 fuzzy numbers , 2015, Discret. Appl. Math..

[4]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[5]  J. Figueroa-García,et al.  On the computation of the distance between Interval Type-2 Fuzzy numbers using a-cuts , 2014, 2014 IEEE Conference on Norbert Wiener in the 21st Century (21CW).

[6]  Yurilev Chalco-Cano,et al.  On Computing the Footprint of Uncertainty of an Interval Type-2 Fuzzy Set as Uncertainty Measure , 2016, WEA.

[7]  Guohe Huang,et al.  A fuzzy‐based simulation method for modelling hydrological processes under uncertainty , 2010 .

[8]  Juan Carlos Figueroa-García Interval Type-2 Fuzzy Markov Chains , 2013, Advances in Type-2 Fuzzy Sets and Systems.

[9]  S.G. Miremadi,et al.  A fuzzy-monte carlo simulation approach for fault tree analysis , 2006, RAMS '06. Annual Reliability and Maintainability Symposium, 2006..

[10]  Juan Carlos Figueroa García,et al.  Scalarization of Type-1 Fuzzy Markov Chains , 2010, ICIC.

[11]  Paul A. Fishwick,et al.  FUZZY SIMULATION: SPECIFYING AND IDENTIFYING QUALITATIVE MODELS∗ , 1991 .

[12]  V. Venkat Raj,et al.  Uncertainty in fault tree analysis: A fuzzy approach , 1996, Fuzzy Sets Syst..

[13]  Nils Brunsson My own book review : The Irrational Organization , 2014 .

[14]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .