Generalizing Face Forgery Detection with High-frequency Features

[1]  In-So Kweon,et al.  CBAM: Convolutional Block Attention Module , 2018, ECCV.

[2]  Gian Luca Foresti,et al.  Computer vision methods for ambient intelligence , 2009, Image Vis. Comput..

[3]  Lu Sheng,et al.  Thinking in Frequency: Face Forgery Detection by Mining Frequency-aware Clues , 2020, ECCV.

[4]  Feng Liu,et al.  On the Detection of Digital Face Manipulation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Cordelia Schmid,et al.  Areas of Attention for Image Captioning , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[6]  François Chollet,et al.  Xception: Deep Learning with Depthwise Separable Convolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Xiaojuan Qi,et al.  Global Texture Enhancement for Fake Face Detection in the Wild , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Hao Zhu,et al.  AOT: Appearance Optimal Transport Based Identity Swapping for Forgery Detection , 2020, NeurIPS.

[9]  Junichi Yamagishi,et al.  Multi-task Learning for Detecting and Segmenting Manipulated Facial Images and Videos , 2019, 2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS).

[10]  Yang Wang,et al.  Cross-Modal Self-Attention Network for Referring Image Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Yunchao Wei,et al.  CCNet: Criss-Cross Attention for Semantic Segmentation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[13]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[14]  Premkumar Natarajan,et al.  ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Matthias Bethge,et al.  ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness , 2018, ICLR.

[16]  Yunchao Wei,et al.  CCNet: Criss-Cross Attention for Semantic Segmentation. , 2020, IEEE transactions on pattern analysis and machine intelligence.

[17]  Andreas Rössler,et al.  ForensicTransfer: Weakly-supervised Domain Adaptation for Forgery Detection , 2018, ArXiv.

[18]  Larry S. Davis,et al.  Two-Stream Neural Networks for Tampered Face Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[19]  Jiangqun Ni,et al.  Deep Learning Hierarchical Representations for Image Steganalysis , 2017, IEEE Transactions on Information Forensics and Security.

[20]  Junichi Yamagishi,et al.  MesoNet: a Compact Facial Video Forgery Detection Network , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[21]  J. Fridrich,et al.  Digital image forensics , 2009, IEEE Signal Processing Magazine.

[22]  Andreas Rössler,et al.  FaceForensics++: Learning to Detect Manipulated Facial Images , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[23]  Shiva K. Pentyala,et al.  Towards Generalizable Forgery Detection with Locality-aware AutoEncoder , 2019, ArXiv.

[24]  Hao Li,et al.  Protecting World Leaders Against Deep Fakes , 2019, CVPR Workshops.

[25]  Xi Wu,et al.  SSTNet: Detecting Manipulated Faces Through Spatial, Steganalysis and Temporal Features , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[27]  Baining Guo,et al.  Face X-Ray for More General Face Forgery Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Xin Yang,et al.  Exposing Deep Fakes Using Inconsistent Head Poses , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Wei Liu,et al.  Occlusion Robust Face Recognition Based on Mask Learning With Pairwise Differential Siamese Network , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[30]  Stefanos Zafeiriou,et al.  300 Faces In-The-Wild Challenge: database and results , 2016, Image Vis. Comput..

[31]  Belhassen Bayar,et al.  A Deep Learning Approach to Universal Image Manipulation Detection Using a New Convolutional Layer , 2016, IH&MMSec.

[32]  Enhua Wu,et al.  Squeeze-and-Excitation Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Anderson Rocha,et al.  Vision of the unseen: Current trends and challenges in digital image and video forensics , 2011, CSUR.

[34]  Jian Cheng,et al.  Additive Margin Softmax for Face Verification , 2018, IEEE Signal Processing Letters.

[35]  Junichi Yamagishi,et al.  Capsule-forensics: Using Capsule Networks to Detect Forged Images and Videos , 2018, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[36]  Siwei Lyu,et al.  In Ictu Oculi: Exposing AI Created Fake Videos by Detecting Eye Blinking , 2018, 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

[37]  Babak Mahdian,et al.  Using noise inconsistencies for blind image forensics , 2009, Image Vis. Comput..

[38]  Justus Thies,et al.  Deferred Neural Rendering: Image Synthesis using Neural Textures , 2019 .

[39]  Alberto Del Bimbo,et al.  Deepfake Video Detection through Optical Flow Based CNN , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[40]  Honggang Qi,et al.  Celeb-DF: A New Dataset for DeepFake Forensics , 2019, ArXiv.

[41]  Jessica J. Fridrich,et al.  Rich Models for Steganalysis of Digital Images , 2012, IEEE Transactions on Information Forensics and Security.

[42]  H. Farid,et al.  Image forgery detection , 2009, IEEE Signal Processing Magazine.

[43]  Abhishek Das,et al.  Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[44]  Alberto Del Bimbo,et al.  Ieee Transactions on Information Forensics and Security 1 a Sift-based Forensic Method for Copy-move Attack Detection and Transformation Recovery , 2022 .

[45]  Margret Keuper,et al.  Unmasking DeepFakes with simple Features , 2019, ArXiv.

[46]  Hugues Talbot,et al.  Image Noise and Digital Image Forensics , 2015, IWDW.

[47]  Stefanos Zafeiriou,et al.  Complement Face Forensic Detection and Localization with FacialLandmarks , 2019, ArXiv.

[48]  Chen Change Loy,et al.  DeeperForensics-1.0: A Large-Scale Dataset for Real-World Face Forgery Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  M. Pantic,et al.  Faces InThe-Wild Challenge : Database and Results , 2016 .

[50]  Siwei Lyu,et al.  Exposing DeepFake Videos By Detecting Face Warping Artifacts , 2018, CVPR Workshops.

[51]  Xing Ji,et al.  CosFace: Large Margin Cosine Loss for Deep Face Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[52]  Larry S. Davis,et al.  Learning Rich Features for Image Manipulation Detection , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[53]  Ser-Nam Lim,et al.  One-Shot Domain Adaptation for Face Generation , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[54]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[55]  Xilin Chen,et al.  Cross Attention Network for Few-shot Classification , 2019, NeurIPS.

[56]  Hua Yang,et al.  Manipulated Face Detector: Joint Spatial and Frequency Domain Attention Network , 2020, ArXiv.

[57]  Christian Riess,et al.  Exploiting Visual Artifacts to Expose Deepfakes and Face Manipulations , 2019, 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW).