Fuel cell technology: nano-engineered multimetallic catalysts

Fuel cells represent an attractive technology for tomorrow's energy vector because hydrogen is an efficient fuel and environmentally clean, but one of the important challenges for fuel cell commercialization is the preparation of active, robust and low-cost catalysts. The synthesis and processing of molecularly-capped multimetallic nanoparticles, as described in this report, serves as an intriguing way to address this challenge. Such nanoparticles are exploited as building blocks for engineering the nanoscale catalytic materials by taking advantage of diverse attributes, including monodispersity, processability, solubility, stability, capability in terms of size, shape, composition and surface properties. This article discusses recent findings of our investigations of the synthesis and processing of nanostructured catalysts with controlled size, composition, and surface properties by highlighting a few examples of bimetallic/trimetallic nanoparticles and supported catalysts for electrocatalytic oxygen reduction.

[1]  Charles T. Campbell,et al.  The Active Site in Nanoparticle Gold Catalysis , 2004, Science.

[2]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[3]  Jin Luo,et al.  Activity-composition correlation of AuPt alloy nanoparticle catalysts in electrocatalytic reduction of oxygen , 2006 .

[4]  Peter N. Njoki,et al.  Electrocatalytic reduction of oxygen: Gold and gold-platinum nanoparticle catalysts prepared by two-phase protocol , 2004 .

[5]  J. Nørskov,et al.  How a gold substrate can increase the reactivity of a Pt overlayer , 1999 .

[6]  Cheol-Woo Yi,et al.  The Promotional Effect of Gold in Catalysis by Palladium-Gold , 2005, Science.

[7]  Peter N. Njoki,et al.  Synergistic activity of gold-platinum alloy nanoparticle catalysts , 2007 .

[8]  Peter N. Njoki,et al.  Platinum-catalyzed synthesis of water-soluble gold-platinum nanoparticles. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[9]  Y. Sung,et al.  Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol Fuel Cells , 2002 .

[10]  David Thompson,et al.  Catalysis By Gold , 1999 .

[11]  Jin Luo,et al.  Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[12]  A. Wiȩckowski,et al.  Heterogeneous electrocatalysis: a core field of interfacial science , 2000 .

[13]  Zhichuan J. Xu,et al.  Core/Shell Nanoparticles as Electrocatalysts for Fuel Cell Reactions , 2008 .

[14]  M. Engelhard,et al.  Composition-controlled synthesis of bimetallic gold-silver nanoparticles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[15]  D. Duprez,et al.  Kinetic and spectroscopic characterization of cluster-derived supported Pt-Au catalysts , 2002 .

[16]  Jin Luo,et al.  Monodispersed core-shell Fe3O4@Au nanoparticles. , 2005, The journal of physical chemistry. B.

[17]  J. Collman,et al.  Mixed-metal face-to-face porphyrin dimers , 1983 .

[18]  Christopher B. Murray,et al.  Compositionally controlled FePt nanoparticle materials , 2001 .

[19]  S. Stock,et al.  Synthesis and characterization of PtSn/carbon and Pt3Sn/carbon nanocomposites as methanol electrooxidation catalysts. , 2002, Journal of nanoscience and nanotechnology.

[20]  Debra R Rolison,et al.  Catalytic Nanoarchitectures--the Importance of Nothing and the Unimportance of Periodicity , 2003, Science.

[21]  V. Rotello,et al.  Highly reactive heterogeneous Heck and hydrogenation catalysts constructed through 'bottom-up' nanoparticle self-assembly. , 2002, Chemical communications.

[22]  Yongli Gao,et al.  Platinum-Maghemite Core−Shell Nanoparticles Using a Sequential Synthesis , 2003 .

[23]  M. Morita,et al.  Anodic oxidation of methanol at a gold-modified platinum electrocatalyst prepared by RF sputtering on a glassy carbon support , 1991 .

[24]  Y. Shiraishi,et al.  Novel synthesis, structure and catalysis of inverted core/shell structured Pd/Pt bimetallic nanoclusters , 2001 .

[25]  E. Kreidler,et al.  Alloy Electrocatalysts Combinatorial Discovery and Nanosynthesis , 2006 .

[26]  Y. D. Kim,et al.  Origin of unusual catalytic activities of Au-based catalysts , 2003 .

[27]  J. Schneider Magnetic Core/Shell and Quantum‐Confined Semiconductor Nanoparticles via Chimie Douce Organometallic Synthesis , 2001 .

[28]  Jin Luo,et al.  Iron oxide-gold core-shell nanoparticles and thin film assembly , 2005 .

[29]  R. Adzic,et al.  The influence of OH− chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions , 1996 .

[30]  Ermete Antolini,et al.  Formation of carbon-supported PtM alloys for low temperature fuel cells: a review , 2003 .

[31]  A. Russell,et al.  X-ray absorption spectroscopy of low temperature fuel cell catalysts. , 2004, Chemical Reviews.

[32]  H. Gasteiger,et al.  Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs , 2005 .

[33]  M. Sastry,et al.  Synthesis of Au-core/Pt-shell nanoparticles within thermally evaporated fatty amine films and their low-temperature alloying , 2001 .

[34]  H. Abruña,et al.  Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. , 2004, Journal of the American Chemical Society.

[35]  Sun,et al.  Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices , 2000, Science.

[36]  A. Dickinson Preparation of a Pt$z.sbnd;Ru/C catalyst from carbonyl complexes for fuel cell applications , 2002 .

[37]  T. He,et al.  Preparation and characterization of carbon-supported PtVFe electrocatalysts , 2006 .

[38]  G. Hutchings,et al.  Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation , 1999 .

[39]  Robert J. Davis,et al.  All That Glitters Is Not Au0 , 2003, Science.

[40]  T. Mallouk,et al.  Combinatorial catalyst development methods , 2010 .

[41]  Combinatorial electrochemical screening of fuel cell electrocatalysts. , 2004, Journal of combinatorial chemistry.

[42]  Xiao-Fei Li,et al.  Size effect on alloying ability and phase stability of immiscible bimetallic nanoparticles , 2006 .

[43]  N. Alonso‐Vante,et al.  Structure and electrocatalytic activity of carbon-supported Pt-Ni alloy nanoparticles toward the oxygen reduction reaction , 2004 .

[44]  A. Shukla,et al.  Methanol-Resistant Oxygen-Reduction Catalysts for Direct Methanol Fuel Cells , 2003 .

[45]  M. Mavrikakis,et al.  Adsorption and Dissociation of O2 on Gold Surfaces: Effect of Steps and Strain , 2003 .

[46]  E. Smotkin,et al.  Array membrane electrode assemblies for high throughput screening of direct methanol fuel cell anode catalysts , 2002 .

[47]  K. Nishimura,et al.  Electrocatalysis on Pd + Au alloy electrodes: Part III. IR spectroscopic studies on the surface species derived from CO and CH3OH in NaOH solution , 1989 .

[48]  T. Ohsaka,et al.  Electrocatalysis by nanoparticles: oxygen reduction on gold nanoparticles-electrodeposited platinum electrodes , 2003 .

[49]  M. El-Sayed,et al.  Some interesting properties of metals confined in time and nanometer space of different shapes. , 2001, Accounts of chemical research.

[50]  M. Engelhard,et al.  Spectroscopic characterizations of molecularly linked gold nanoparticle assemblies upon thermal treatment. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[51]  Zhichuan J. Xu,et al.  Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. , 2007, Journal of the American Chemical Society.

[52]  S. Wasmus,et al.  Methanol oxidation and direct methanol fuel cells: a selective review 1 In honour of Professor W. Vi , 1999 .

[53]  Guoying Chen,et al.  Comparison of High-Throughput Electrochemical Methods for Testing Direct Methanol Fuel Cell Anode Electrocatalysts , 2005 .

[54]  Peter N. Njoki,et al.  Ternary alloy nanoparticles with controllable sizes and composition and electrocatalytic activity , 2006 .

[55]  Henri Patin,et al.  Reduced transition metal colloids: a novel family of reusable catalysts? , 2002, Chemical reviews.

[56]  Jong-Ho Choi,et al.  Chemical and Electronic Effects of Ni in Pt/Ni and Pt/Ru/Ni Alloy Nanoparticles in Methanol Electrooxidation , 2002 .

[57]  S. Litster,et al.  PEM fuel cell electrodes , 2004 .

[58]  Guoying Chen,et al.  Combinatorial discovery of bifunctional oxygen reduction — water oxidation electrocatalysts for regenerative fuel cells , 2001 .

[59]  A. Borg,et al.  Nucleation and growth of Au overlayers on Pt(100)-hex-R0.7° studied by STM and photoelectron spectroscopy , 1998 .

[60]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[61]  Alfred B. Anderson,et al.  Systematic Theoretical Study of Alloys of Platinum for Enhanced Methanol Fuel Cell Performance , 1996 .

[62]  Pierre R. Roberge,et al.  Development and application of a generalised steady-state electrochemical model for a PEM fuel cell , 2000 .

[63]  Masatake Haruta,et al.  Advances in the catalysis of Au nanoparticles , 2001 .

[64]  M. Haruta Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications , 2004 .

[65]  Peter N. Njoki,et al.  Phase Properties of Carbon-Supported Gold−Platinum Nanoparticles with Different Bimetallic Compositions , 2005 .

[66]  D. Chu,et al.  Novel electrocatalysts for direct methanol fuel cells , 2002 .

[67]  Junliang Zhang,et al.  Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. , 2005, Angewandte Chemie.

[68]  Yukihide Shiraishi,et al.  Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study. , 2005, The journal of physical chemistry. B.

[69]  M. Mrksich,et al.  Catalytic Asymmetric Dihydroxylation by Gold Colloids Functionalized with Self-Assembled Monolayers , 1999 .

[70]  Frank Caruso,et al.  Nanoengineering of particle surfaces. , 2001 .

[71]  Mathias Brust,et al.  Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system , 1994 .

[72]  R. Masel,et al.  UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis , 2002 .

[73]  R. Behm,et al.  New PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts , 2000 .

[74]  C. S. Kim,et al.  Vibrational coupling as a probe of adsorption at different structural sites on a stepped single-crystal electrode. , 1997, Analytical chemistry.

[75]  V. Radmilović,et al.  Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts , 2002 .

[76]  H. Gasteiger,et al.  Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst , 1999 .

[77]  D. Goodman,et al.  Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties , 1998, Science.

[78]  Peter W. Stephens,et al.  Nanocrystal gold molecules , 1996 .

[79]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[80]  M. José-Yacamán,et al.  Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles. , 2005, The journal of physical chemistry. B.

[81]  T. Mallouk,et al.  Combinatorial discovery of alloy electrocatalysts for amperometric glucose sensors. , 2001, Analytical chemistry.

[82]  G. Bond Gold: A relatively new catalyst , 2001 .

[83]  Q. Ge,et al.  DFT studies of Pt/Au bimetallic clusters and their interactions with the CO molecule. , 2005, The journal of physical chemistry. B.

[84]  H. Freund,et al.  Surface chemistry of catalysis by gold , 2004 .

[85]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[86]  P. C. Biswas,et al.  Electro-oxidation of CO and methanol on graphite-based platinum electrodes combined with oxide-supported ultrafine gold particles , 1995 .

[87]  Christopher J. Kiely,et al.  Ordered Colloidal Nanoalloys , 2000 .

[88]  G. Schmid,et al.  Ligand-stabilized metal clusters and colloids: properties and applications , 1996 .

[89]  B. Martin,et al.  DNA‐Directed Assembly of Gold Nanowires on Complementary Surfaces , 2001 .

[90]  Q. Ge,et al.  A density functional theory study of CO adsorption on Pt-Au nanoparticles , 2006 .

[91]  R. Finke,et al.  A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis , 1999 .

[92]  H. Bönnemann,et al.  Advantageous fuel cell catalysts from colloidal nanometals , 2004 .

[93]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[94]  Peter N. Njoki,et al.  Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles , 2006, Nanoscale Research Letters.

[95]  M. Balasubramanian,et al.  ULTRA-LOW PLATINUM CONTENT FUEL CELL ANODE ELECTROCATALYST WITH A LONG-TERM PERFORMANCE STABILITY , 2004 .

[96]  I. Vandendael,et al.  High performance gold-supported platinum electrocatalyst for oxygen reduction , 2002 .

[97]  C. Pu,et al.  Methanol Oxidation on Single‐Phase Pt‐Ru‐Os Ternary Alloys , 1997 .

[98]  Chuan-Jian Zhong,et al.  Core–Shell Assembled Nanoparticles as Catalysts , 2001 .

[99]  D. Meier,et al.  The influence of metal cluster size on adsorption energies: CO adsorbed on Au clusters supported on TiO2. , 2004, Journal of the American Chemical Society.

[100]  P. Geerlings,et al.  DFT study of oxygen adsorption on modified nanostructured gold pyramids. , 2005, The journal of physical chemistry. B.

[101]  Zhong Lin Wang,et al.  Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles , 2004 .

[102]  John Davey,et al.  Recent advances in direct methanol fuel cells at Los Alamos National Laboratory , 2000 .

[103]  Stephen Maldonado,et al.  Synthesis and characterization of dendrimer templated supported bimetallic Pt-Au nanoparticles. , 2004, Journal of the American Chemical Society.

[104]  D. Nikles,et al.  Synthesis, Self-Assembly, and Magnetic Properties of Fe x Co y Pt 100- x - y Nanoparticles , 2002 .

[105]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[106]  T. He,et al.  Synthesis and Characterization of Monolayer-Capped PtVFe Nanoparticles with Controllable Sizes and Composition , 2005 .

[107]  Chad A. Mirkin,et al.  Programmed Materials Synthesis with DNA. , 1999, Chemical reviews.

[108]  V. Dravid,et al.  Direct evidence of oxidized gold on supported gold catalysts. , 2005, The journal of physical chemistry. B.

[109]  T. Khimyak,et al.  Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds , 2001 .

[110]  R. Murray,et al.  Electroactive three-dimensional monolayers: Anthraquinone ω-functionalized alkanethiolate-stabilized gold clusters , 1998 .

[111]  Viral S. Mehta,et al.  Review and analysis of PEM fuel cell design and manufacturing , 2003 .

[112]  K. Swider-Lyons,et al.  How To Make Electrocatalysts More Active for Direct Methanol OxidationAvoid PtRu Bimetallic Alloys , 2000 .

[113]  Peter N. Njoki,et al.  Electrocatalytic oxidation of methanol: carbon-supported gold–platinum nanoparticle catalysts prepared by two-phase protocol , 2005 .

[114]  José L. Fernández,et al.  Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-co (M: Pd, Ag, Au). , 2005, Journal of the American Chemical Society.

[115]  Nigel P. Brandon,et al.  Recent Advances in Materials for Fuel Cells , 2003 .

[116]  Junliang Zhang,et al.  Mixed-metal pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. , 2005, Journal of the American Chemical Society.

[117]  A. Wiȩckowski,et al.  Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts , 2004 .

[118]  D. C. Trivedi,et al.  Chemical and electrochemical depositions of platinum group metals and their applications , 2005 .

[119]  M. S. Chen,et al.  The Structure of Catalytically Active Gold on Titania , 2004, Science.

[120]  W. Schärtl Crosslinked Spherical Nanoparticles with Core–Shell Topology , 2000 .

[121]  Horgan,et al.  The importance of the active states of surface atoms with regard to the electrocatalytic behaviour of metal electrodes in aqueous media , 2000 .

[122]  R. Murray,et al.  Stable, monolayer-protected metal alloy clusters [18] , 1998 .

[123]  Min Gyu Kim,et al.  Characterization of superparamagnetic "core-shell" nanoparticles and monitoring their anisotropic phase transition to ferromagnetic "solid solution" nanoalloys. , 2004, Journal of the American Chemical Society.

[124]  Peter N. Njoki,et al.  Characterization of carbon-supported AuPt nanoparticles for electrocatalytic methanol oxidation reaction. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[125]  P J Hsu,et al.  Structures of bimetallic clusters. , 2006, The Journal of chemical physics.

[126]  T. Ohsaka,et al.  Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes , 2002 .

[127]  W. H. Weinberg,et al.  High throughput experimental and theoretical predictive screening of materials : A comparative study of search strategies for new fuel cell anode catalysts , 2003 .

[128]  R. Murray,et al.  Monolayer-protected cluster molecules. , 2000, Accounts of chemical research.

[129]  M. Haruta Catalysis: Gold rush , 2005, Nature.

[130]  Xin Wang,et al.  Core@shell nanomaterials: gold-coated magnetic oxide nanoparticles , 2008 .