Size Structures Sensory Hierarchy in Ocean Life

Survival in aquatic environments requires organisms to have effective means of collecting information from their surroundings through various sensing strategies. In this study, we explore how sensing mode and range depend on body size. We find a hierarchy of sensing modes determined by body size. With increasing body size, a larger battery of modes becomes available (chemosensing, mechanosensing, vision, hearing and echolocation, in that order) while the sensing range also increases. This size-dependent hierarchy and the transitions between primary sensory modes are explained on the grounds of limiting factors set by physiology and the physical laws governing signal generation, transmission and reception. We theoretically predict the body size limits for various sensory modes, which align well with size ranges found in literature. The treatise of all ocean life, from unicellular organisms to whales, demonstrates how body size determines available sensing modes, and thereby acts as a major structuring factor of aquatic life.

[1]  H. Hirche,et al.  Reproductive biology of deep-water calanoid copepods from the Arctic Ocean , 2007 .

[2]  André W. Visser,et al.  Small, wet & rational: Individual based zooplankton ecology , 2011 .

[3]  P. Nachtigall,et al.  Audiogram of a formerly stranded long-finned pilot whale (Globicephala melas) measured using auditory evoked potentials , 2010, Journal of Experimental Biology.

[4]  H. Hausen,et al.  Mechanism of phototaxis in marine zooplankton , 2008, Nature.

[5]  T. Akamatsu,et al.  Sound variation and function in captive Commerson's dolphins (Cephalorhynchus commersonii) , 2014, Behavioural Processes.

[6]  M. Denny,et al.  Air and water : the biology and physics of life's media , 1993 .

[7]  Branko Velimirov,et al.  Nanobacteria, Ultramicrobacteria and Starvation Forms : A Search for the Smallest Metabolizing Bacterium , 2001 .

[8]  Sönke Johnsen,et al.  The physics and neurobiology of magnetoreception , 2005, Nature Reviews Neuroscience.

[9]  C. Lockyer,et al.  Body weights of some species of large whales , 1976 .

[10]  E. Holmes On being the right size , 2005, Nature Genetics.

[11]  Whitlow W L Au,et al.  Audiogram of a harbor porpoise (Phocoena phocoena) measured with narrow-band frequency-modulated signals. , 2002, The Journal of the Acoustical Society of America.

[12]  Darlene R. Ketten,et al.  The Marine Mammal Ear: Specializations for Aquatic Audition and Echolocation , 1992 .

[13]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[14]  J. C. Andrews Deformation of the Active Space in the Low Reynolds Number Feeding Current of Calanoid Copepods , 1983 .

[15]  Anthony D. Hawkins,et al.  Underwater Sound and Fish Behaviour , 1986 .

[16]  J. Adler Chemotaxis in bacteria. , 1976, Journal of supramolecular structure.

[17]  R. Busnel,et al.  Animal Sonar Systems , 1980, NATO Advanced Study Institutes Series.

[18]  G. Kreimer,et al.  The green algal eyespot apparatus: a primordial visual system and more? , 2009, Current Genetics.

[19]  K. Andersen,et al.  Asymptotic Size Determines Species Abundance in the Marine Size Spectrum , 2006, The American Naturalist.

[20]  H. Barlow The Size of Ommatidia in Apposition Eyes , 1952 .

[21]  Guido Dehnhardt,et al.  Hydrodynamic Perception in Pinnipeds , 2012 .

[22]  Richard R. Fay,et al.  Rethinking sound detection by fishes , 2011, Hearing Research.

[23]  Development of the ear, hearing capabilities and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus) , 2012, Environmental Biology of Fishes.

[24]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[25]  Navish Wadhwa,et al.  Flow disturbances generated by feeding and swimming zooplankton , 2014, Proceedings of the National Academy of Sciences.

[26]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[27]  D. Ketten Marine mammal auditory systems : a summary of audiometric and anatomical data and its implications for underwater acoustic impacts , 1998 .

[28]  Houshuo Jiang,et al.  The fluid dynamics of swimming by jumping in copepods , 2011, Journal of The Royal Society Interface.

[29]  J. Ford,et al.  The mixed blessing of echolocation: differences in sonar use by fish-eating and mammal-eating killer whales , 1996, Animal Behaviour.

[30]  G. Bergeles,et al.  Notes on Numerical Fluid Mechanics and Multidisciplinary Design , 2012 .

[31]  Mark P. Johnson,et al.  Deep-diving foraging behaviour of sperm whales (Physeter macrocephalus). , 2006, The Journal of animal ecology.

[32]  H. Bleckmann,et al.  Role of lateral line in fish behaviour , 1986 .

[33]  P. E. Nachtigall,et al.  Audiogram of a stranded Blainville's beaked whale (Mesoplodon densirostris) measured using auditory evoked potentials , 2011, Journal of Experimental Biology.

[34]  T. Kiørboe Mate finding, mating, and population dynamics in a planktonic copepod Oithona davisae: There are too few males , 2007 .

[35]  David I. Mostofsky,et al.  The behavior of fish and other aquatic animals , 1978 .

[36]  Richard R. Fay,et al.  Hearing and Sound Communication in Fishes , 1981, Proceedings in Life Sciences.

[37]  A. Kasumyan,et al.  Sounds and sound production in fishes , 2008, Journal of Ichthyology.

[38]  Javier Jiménez,et al.  Ocean turbulence at millimeter scales , 1997 .

[39]  D. B. Dusenbery,et al.  A critical body size for use of pheromones in mate location , 1995, Journal of Chemical Ecology.

[40]  D. B. Dusenbery Sensory Ecology: How Organisms Acquire and Respond to Information , 1992 .

[41]  D B Dusenbery,et al.  Minimum size limit for useful locomotion by free-swimming microbes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[42]  H. J. Walker,et al.  The World's Smallest Vertebrate, Schindleria brevipinguis, A New Paedomorphic Species in the Family Schindleriidae (Perciformes: Gobioidei) , 2004 .

[43]  David B. Dusenbery,et al.  Living at Micro Scale: The Unexpected Physics of Being Small , 2009 .

[44]  D. Feigenbaum,et al.  Prey detection in the Chaetognatha: Response to a vibrating probe and experimental determination of attack distance in large aquaria , 1977 .

[45]  T. Kiørboe,et al.  Motility patterns and mate encounter rates in planktonic copepods , 2005 .

[46]  F. C. Volkmann,et al.  3 – Vision in Fishes: Color and Pattern , 1978 .

[47]  H. Browman,et al.  Fine-scale observations of the predatory behaviour of the carnivorous copepod Paraeuchaeta norvegica and the escape responses of their ichthyoplankton prey, Atlantic cod (Gadus morhua) , 2011 .

[48]  T. Goldsmith Optimization, Constraint, and History in the Evolution of Eyes , 1990, The Quarterly Review of Biology.

[49]  S. Colin,et al.  Danger of zooplankton feeding: the fluid signal generated by ambush-feeding copepods , 2010, Proceedings of the Royal Society B: Biological Sciences.

[50]  Shaun P. Collin,et al.  The functional roles of passive electroreception in non-electric fishes , 2004 .

[51]  H. Jakobsen Escape response of planktonic protists to fluid mechanical signals , 2001 .

[52]  Brian D. Smith,et al.  Clicking in Shallow Rivers: Short-Range Echolocation of Irrawaddy and Ganges River Dolphins in a Shallow, Acoustically Complex Habitat , 2013, PloS one.

[53]  L. Cornell,et al.  Commerson's dolphin (Cephalorhynchus commersonii): A discussion of the first live birth within a marine zoological park , 1987 .

[54]  M. Land,et al.  The evolution of eyes. , 1992, Annual review of neuroscience.

[55]  K. Denman,et al.  Chapter 3. COUPLING SMALL-SCALE PHYSICAL PROCESSES WITH BIOLOGY , 2001 .

[56]  M. Latz,et al.  Shear-Stress Dependence of Dinoflagellate Bioluminescence , 2007, The Biological Bulletin.

[57]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[58]  Lee A. Miller,et al.  Characteristics of echolocation signals used by a harbour propoise (Phocoena phocoena) in a target detection experiment , 2002 .

[59]  J. Montgomery Lateral Line Detection of Planktonic Prey , 1989 .

[60]  C. Feuillade,et al.  A viscous-elastic swimbladder model for describing enhanced-frequency resonance scattering from fish , 1998 .

[61]  D. B. Dusenbery Physical Constraints in Sensory Ecology , 2001 .

[62]  H. Jakobsen,et al.  Hydromechanical signaling between the ciliate Mesodinium pulex and motile protist prey , 2006 .

[63]  Michael A. Ainslie,et al.  A simplified formula for viscous and chemical absorption in sea water , 1998 .

[64]  R. H. Love Resonant acoustic scattering by swimbladder‐bearing fisha) , 1978 .

[65]  D. Hartline,et al.  Mechanoreception in marine copepods: electrophysiological studies on the first antennae , 1992 .

[66]  P. K. Bjørnsen,et al.  Zooplankton grazing and growth: Scaling within the 2‐2,‐μm body size range , 1997 .

[67]  Howard C Howland,et al.  The allometry and scaling of the size of vertebrate eyes , 2004, Vision Research.

[68]  L. S. Demski,et al.  Sensory Biology of Elasmobranchs , 2009 .

[69]  John A. Hildebrand,et al.  Acoustic Models of Sound Production and Propagation , 2000 .

[70]  G. Potts The Behaviour of Teleost Fishes, Tony J. Pitcher (Ed.). Croom Helm, Beckenham, Kent (1986), 553 , 1986 .

[71]  K H Andersen,et al.  Characteristic Sizes of Life in the Oceans, from Bacteria to Whales. , 2016, Annual review of marine science.

[72]  B. Woźniak,et al.  Light absorption in sea water , 2007 .

[73]  T. Kiørboe How zooplankton feed: mechanisms, traits and trade‐offs , 2011, Biological reviews of the Cambridge Philosophical Society.

[74]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[75]  M. Kleiber Body size and metabolism , 1932 .

[76]  Whitlow W. L. Au,et al.  Long‐range target detection in open waters by an echolocating Atlantic Bottlenose dolphin (Tursiops truncatus) , 1980 .

[77]  Matt J. Whitfield,et al.  The Bacterial Fimbrial Tip Acts as a Mechanical Force Sensor , 2011, PLoS biology.

[78]  J. Atema,et al.  Flow Sensing in Sharks: Lateral Line Contributions to Navigation and Prey Capture , 2014 .

[79]  J. Blaxter The Swimbladder and Hearing , 1981 .

[80]  Svein Løkkeborg,et al.  Feeding behaviour of cod,Gadus morhua: activity rhythm and chemically mediated food search , 1998 .

[81]  M. Land Visual acuity in insects. , 1997, Annual review of entomology.

[82]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[83]  H. Saito,et al.  Observations of copepod feeding and vertical distribution under natural turbulent conditions in the North Sea , 2001 .

[84]  J. Mollon Color vision. , 1982, Annual review of psychology.

[85]  André W. Visser,et al.  Predator and prey perception in copepods due to hydromechanical signals , 1999 .

[86]  Detection and characterization of yellowfin and bluefin tuna using passive-acoustical techniques , 2003 .

[87]  H. Berg,et al.  A physicist looks at bacterial chemotaxis. , 1988, Cold Spring Harbor symposia on quantitative biology.

[88]  André W. Visser,et al.  Hydromechanical signals in the plankton , 2001 .

[89]  James G. Mitchell The influence of cell size on marine bacterial motility and energetics , 1991, Microbial Ecology.

[90]  D. Ebert Ecology, Epidemiology, and Evolution of Parasitism in Daphnia , 2005 .

[91]  Maarten Kamermans,et al.  Teleost polarization vision: how it might work and what it might be good for , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[92]  R A Kastelein,et al.  Target detection by an echolocating harbor porpoise (Phocoena phocoena). , 1999, The Journal of the Acoustical Society of America.

[93]  Steven H. Schwartz,et al.  Visual Perception: A Clinical Orientation , 1998 .

[94]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[95]  Hearing and Auditory Evoked Potential Methods Applied to Odontocete Cetaceans , 2007 .

[96]  I. Hense,et al.  Beneath the surface: Characteristics of oceanic ecosystems under weak mixing conditions – A theoretical investigation , 2007 .

[97]  K. Mori,et al.  First-ever observations of a live giant squid in the wild , 2005, Proceedings of the Royal Society B: Biological Sciences.

[98]  J. Giske,et al.  A theoretical model of aquatic visual feeding , 1993 .

[99]  P. Moore,et al.  Physical constraints of chemoreception in foraging copepods , 1999 .

[100]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[101]  M. Latz,et al.  Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device , 2008, Journal of Experimental Biology.

[102]  D. Higgs,et al.  Ontogenetic and interspecific variation in hearing ability in marine fish larvae. , 2011 .

[103]  David G. Smith,et al.  Optically pure waters in Waikoropupu ('Pupu') Springs, Nelson, New Zealand , 1995 .

[104]  Joel H. Ferziger,et al.  Introduction to Theoretical and Computational Fluid Dynamics , 1996 .