The magnetic coagulation reaction between paramagnetic particles and iron ions coprecipitates

[1]  N. Gokon,et al.  Magnetic coagulation and reaction rate for the aqueous ferrite formation reaction , 2002 .

[2]  N. Saho,et al.  Continuous superconducting-magnet filtration system , 1999, IEEE Transactions on Applied Superconductivity.

[3]  E. Voudrias,et al.  Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron. , 1998, Environmental pollution.

[4]  M. Yoshikawa,et al.  High Temperature Superconducting Quasi-Permanent Magnets and Their Application to Superconducting Motor , 1997 .

[5]  T. Yazawa,et al.  Cooling structure for 6 T NbTi superconducting magnet directly cooled by cryocooler , 1995, IEEE Transactions on Applied Superconductivity.

[6]  T. Yazawa,et al.  Cryocooler directly cooled 6 T NbTi superconducting magnet system with 180 mmroom temperature bore , 1994 .

[7]  A. M. Shaikh,et al.  Removal of phosphate from waters by precipitation and high gradient magnetic separation , 1992 .

[8]  J. Reuver,et al.  High Gradient Magnetic Separation Technique for Wastewater Treatment , 1991 .

[9]  J. Iannicelli,et al.  Development of High Extraction Magnetic Filteration by the Kaolin Industry of Georgia , 1976 .

[10]  H. Kolm,et al.  High‐Gradient Magnetic Separation A Water‐Treatment Alternative , 1976 .

[11]  J. Oberteuffer,et al.  Magnetic separation: A review of principles, devices, and applications , 1974 .

[12]  D. Kelland,et al.  High gradient magnetic separation applied to mineral beneficiation , 1973 .

[13]  J. Oberteuffer,et al.  High-Gradient Magnetic Separation , 1973 .

[14]  A. Odian,et al.  SEARCH FOR MAGNETIC MONOPOLES , 1971 .

[15]  P. Moore The Fe2+3(H20)n(PO4)2 homologous series: Crystal-chemical relationships and oxidized equivalents , 1971 .