Nonlinear optics in photonic crystal nanocavities: from light sources to quantum photonic interfaces

We demonstrate photonic interfaces between infrared and visible wavelength ranges by employing enhanced nonlinear frequency conversion in photonic crystal cavities in GaP or GaAs. We first show resonantly enhanced second harmonic and sum frequency generation in GaP photonic crystal cavities. We then integrate these nonlinear frequency conversion elements with a single InAs quantum dot to produce a fast single photon source that is optically triggered at telecommunications wavelength. These frequency conversion techniques are critical for applications including light sources at wavelengths that are difficult to access with existing lasers, IR upconversion-based detectors, and photonic quantum interfaces between the fiber-optic networks and quantum emitters.

[1]  Yasuhiko Arakawa,et al.  A gallium nitride single-photon source operating at 200 K , 2006, Nature materials.

[2]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[3]  Robert L. Byer,et al.  Efficient second harmonic generation of a diode-laser-pumped CW Nd:YAG laser using monolithic MgO:LiNbO/sub 3/ external resonant cavities , 1988 .

[4]  D. Englund,et al.  Efficient photonic crystal cavity-waveguide couplers , 2006, physics/0610105.

[5]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[6]  Larry A. Coldren,et al.  Polarization-switchable single photon source using the Stark effect , 2008 .

[7]  Edo Waks,et al.  Submicrosecond correlations in photoluminescence from InAs quantum dots , 2004 .

[8]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[9]  Andrei Faraon,et al.  High-brightness single photon source from a quantum dot in a directional-emission nanocavity. , 2009, Optics Express.

[10]  Shanhui Fan,et al.  Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. , 2006, Optics letters.

[11]  M M Fejer,et al.  Difference frequency generation of 8-microm radiation in orientation- patterned GaAs. , 2002, Optics letters.

[12]  Dan Dalacu,et al.  Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers , 2007 .

[13]  W. Marsden I and J , 2012 .

[14]  D M Simanovskii,et al.  Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs. , 2006, Optics letters.

[15]  Marko Loncar,et al.  Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities. , 2009, Optics letters.

[16]  Martin M. Fejer,et al.  All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion , 2001 .

[17]  Meir Orenstein,et al.  Photon conversion processes in dispersive microcavities : Quantum-field model , 2008 .

[18]  Charles Santori,et al.  Enhanced single-photon emission from a quantum dot in a micropost microcavity , 2003 .

[19]  Michael Pepper,et al.  Electrically Driven Single-Photon Source , 2001, Science.

[20]  Marius A Albota,et al.  Efficient single-photon counting at 1.55 microm by means of frequency upconversion. , 2004, Optics letters.

[21]  D. Moss,et al.  Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides , 2009 .

[22]  Andrei Faraon,et al.  Gallium phosphide photonic crystal nanocavities in the visible , 2008 .

[23]  Takashi Kondo,et al.  Absolute scale of second-order nonlinear-optical coefficients , 1997 .

[24]  M. S. Skolnick,et al.  Mode structure of the L3 photonic crystal cavity , 2007 .

[25]  M. Liscidini,et al.  Second harmonic generation in doubly resonant planar microcavities , 2004, Proceedings of 2004 6th International Conference on Transparent Optical Networks (IEEE Cat. No.04EX804).

[26]  Steven G. Johnson,et al.  Chi((2)) and Chi((3)) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. , 2007, Optics express.

[27]  M. Fejer,et al.  Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides. , 2005, Optics letters.

[28]  Bryan Ellis,et al.  Electrically pumped photonic crystal nanocavity light sources using a laterally doped p-i-n junction , 2010 .

[29]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[30]  Zhenshan Yang,et al.  Enhanced second-harmonic generation in AlGaAs microring resonators. , 2007, Optics letters.

[31]  Martin M. Fejer,et al.  Terahertz-wave generation in quasi-phase-matched GaAs , 2006 .

[32]  Costantino De Angelis,et al.  Maximum-exponent scaling behavior of optical second-harmonic generation in finite multilayer photonic crystals. , 2007, Physical review letters.