New MIS 19 EPICA Dome C high resolution deuterium data: hints for a problematic preservation of climate variability at sub-millennial scale in the "oldest ice"

Marine Isotope Stage 19 (MIS 19) is the oldest interglacial period archived in the EPICA Dome C ice core (~ 780 ky BP) and the closest "orbital analogue" to the Holocene -- albeit with a different obliquity amplitude and phase with precession. New detailed deuterium measurements have been conducted with a depth resolution of 11 cm (corresponding time resolution of ~ 130 years). They confirm our earlier low resolution profile (55 cm), showing a relatively smooth shape over the MIS 20 to MIS 18 time period with a lack of sub-millennial climate variability, first thought to be due to this low resolution. The MIS 19 high resolution profile actually reveals a strong isotopic diffusion process leading to a diffusion length of at least ~ 40 cm erasing sub-millennial climate variability. We suggest that this diffusion is caused by water-veins associated with large ice crystals at temperatures above ‑10 °C, temperature conditions in which the MIS 19 ice has spent more than 200 ky. This result has implications for the selection of the future "oldest ice" drilling site.

[1]  T. Stocker,et al.  Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores , 2005, Science.

[2]  J. Jouzel,et al.  Anomalous flow below 2700 m in the EPICA Dome C ice core detected using δ 18 O of atmospheric oxygen measurements , 2007 .

[3]  W. Dansgaard,et al.  Greenland palaeotemperatures derived from GRIP bore hole temperature and ice core isotope profiles , 1995 .

[4]  T. Neumann,et al.  Effects of firn ventilation on isotopic exchange , 2004 .

[5]  J. Jouzel,et al.  Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core , 2004 .

[6]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[7]  R. Ramseier Self‐Diffusion of Tritium in Natural and Synthetic Ice Monocrystals , 1967 .

[8]  T. Stocker,et al.  Stable Carbon Cycle–Climate Relationship During the Late Pleistocene , 2005, Science.

[9]  E. Mosley‐Thompson,et al.  Holocene Climate Variability in Antarctica Based on 11 Ice-Core Isotopic Records , 2000, Quaternary Research.

[10]  A. Rempel,et al.  Segregation, transport, and interaction of climate proxies in polycrystalline ice , 2003 .

[11]  J. Nye Water veins and lenses in polycrystalline ice , 1992 .

[12]  J. Jouzel,et al.  An ice core perspective on the age of the Matuyama-Brunhes boundary , 2008 .

[13]  J. Jouzel,et al.  Paleoclimatic variability inferred from the spectral analysis of Greenland and Antarctic ice‐core data , 1997 .

[14]  O. Castelnau,et al.  Dynamic Recrystallization of Ice in Polar Ice Sheets , 1995 .

[15]  J. Tison,et al.  One-to-one coupling of glacial climate variability in Greenland during Ice Sheet Invasion , 2006 .

[16]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[17]  J. Jouzel,et al.  The two-step shape and timing of the last deglaciation in Antarctica , 1995 .

[18]  M. Loutre,et al.  Marine Isotope Stage 11 as an analogue for the present interglacial , 2003 .

[19]  W. Broecker,et al.  The last deglaciation : absolute and radiocarbon chronologies , 1992 .

[20]  R. Röthlisberger,et al.  Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core , 2010 .

[21]  J. Jouzel,et al.  A new 27 ky high resolution East Antarctic climate record , 2001 .

[22]  Michael Ghil,et al.  ADVANCED SPECTRAL METHODS FOR CLIMATIC TIME SERIES , 2002 .

[23]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[24]  W. Ruddiman Cold climate during the closest Stage 11 analog to recent Millennia , 2005 .

[25]  B. Vaughn,et al.  AN AUTOMATED SYSTEM FOR HYDROGEN ISOTOPE ANALYSIS OF WATER , 1998 .

[26]  D. Dahl-Jensen,et al.  Evolution of the Texture along the EPICA Dome C Ice Core , 2009 .

[27]  Masa Kageyama,et al.  Past temperature reconstructions from deep ice cores: relevance for future climate change , 2006 .

[28]  Kenji Kawamura,et al.  1-D-ice flow modelling at EPICA Dome C and Dome Fuji, East Antarctica , 2007 .

[29]  G. Hoffmann,et al.  Diffusion of stable isotopes in polar firn and ice : the isotope effect in firn diffusion , 2000 .

[30]  M. Loutre Clues from MIS 11 to predict the future climate – a modelling point of view , 2003 .

[31]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[32]  Uffe Andersen,et al.  The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability , 1997 .

[33]  A. Rempel,et al.  Isotopic diffusion in polycrystalline ice , 2003, Journal of Glaciology.

[34]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[35]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[36]  Johannes Oerlemans,et al.  Modelled atmospheric temperatures and global sea levels over the past million years , 2005, Nature.

[37]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[38]  本堂 武夫,et al.  Physics of ice core records , 2000 .

[39]  W. Dansgaard,et al.  On Flow Model Dating of Stable Isotope Records from Greenland Ice Cores , 1992 .

[40]  T. Stocker,et al.  Atmospheric CO2 concentrations over the last glacial termination. , 2001, Science.

[41]  J. Nye Diffusion of isotopes in the annual layers of ice sheets , 1998 .

[42]  J. Jouzel,et al.  10Be evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core , 2006, Nature.

[43]  Didier Paillard,et al.  The timing of Pleistocene glaciations from a simple multiple-state climate model , 1998, Nature.

[44]  R. Röthlisberger,et al.  Atmospheric decadal variability from high-resolution Dome C ice core records of aerosol constituents beyond the Last Interglacial , 2010 .

[45]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[46]  P. Tzedakis The MIS 11 - MIS 1 analogy, southern European vegetation, atmospheric methane and the , 2009 .

[47]  John W. Holt,et al.  Using radar-sounding data to identify the distribution and sources of subglacial water: application to Dome C, East Antarctica , 2009 .

[48]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[49]  Epica Community Members One-to-one coupling of glacial climate variability in Greenland and Antarctica , 2006, Nature.

[50]  J. Hansen,et al.  EPICA Dome C record of glacial and interglacial intensities , 2010 .