Calderón's inverse problem with a finite number of measurements II: independent data

We prove that an $L^{\infty }$ potential in the Schrödinger equation in three and higher dimensions can be uniquely determined from a finite number of boundary measurements, provided it belongs to a known finite dimensional subspace ${\mathcal{W}}$ . As a corollary, we obtain a similar result for Calderón’s inverse conductivity problem. Lipschitz stability estimates and a globally convergent nonlinear reconstruction algorithm for both inverse problems are also presented. These are the first results on global uniqueness, stability and reconstruction for nonlinear inverse boundary value problems with finitely many measurements. We also discuss a few relevant examples of finite dimensional subspaces ${\mathcal{W}}$ , including bandlimited and piecewise constant potentials, and explicitly compute the number of required measurements as a function of $\dim {\mathcal{W}}$ .

[1]  Maarten V. de Hoop,et al.  Lipschitz stability for a piecewise linear Schrödinger potential from local Cauchy data , 2017, Asymptot. Anal..

[2]  Hongyu Liu,et al.  Recovering piecewise constant refractive indices by a single far-field pattern , 2017, Inverse Problems.

[3]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[4]  G. Uhlmann Complex Geometrical Optics and Calderón’s Problem , 2019, Series in Contemporary Applied Mathematics.

[5]  Luca Rondi,et al.  Examples of exponential instability for inverse inclusion and scattering problems , 2003 .

[6]  L. Rondi Discrete approximation and regularisation for the inverse conductivity problem , 2017, 1702.03745.

[7]  R. Novikov,et al.  Reconstruction of a potential from the impedance boundary map , 2012, 1204.0076.

[8]  Pedro Caro,et al.  GLOBAL UNIQUENESS FOR THE CALDERÓN PROBLEM WITH LIPSCHITZ CONDUCTIVITIES , 2014, Forum of Mathematics, Pi.

[9]  Bastian Harrach Uniqueness, stability and global convergence for a discrete inverse elliptic Robin transmission problem , 2019 .

[10]  A. Nachman,et al.  Reconstructions from boundary measurements , 1988 .

[12]  Ben Adcock,et al.  On optimal wavelet reconstructions from Fourier samples: linearity and universality of the stable sampling rate , 2012, ArXiv.

[13]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[14]  Maarten V. de Hoop,et al.  Lipschitz stability for the electrostatic inverse boundary value problem with piecewise linear conductivities , 2015, 1509.06277.

[15]  Elena Beretta,et al.  Lipschitz Stability for the Electrical Impedance Tomography Problem: The Complex Case , 2010, 1008.4046.

[16]  Bastian Harrach,et al.  Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes , 2018, Inverse Problems.

[17]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[18]  Sergio Vessella,et al.  Lipschitz stability for the inverse conductivity problem , 2005, Adv. Appl. Math..

[19]  AdcockBen,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016 .

[20]  Elena Beretta,et al.  Stable Determination of Polyhedral Interfaces from Boundary Data for the Helmholtz Equation , 2014 .

[21]  Giovanni Alessandrini,et al.  Stable determination of conductivity by boundary measurements , 1988 .

[22]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[23]  Maarten V. de Hoop,et al.  Uniqueness and Lipschitz stability of an inverse boundary value problem for time-harmonic elastic waves , 2014, 1412.3465.

[24]  Ben Adcock,et al.  Generalized Sampling and Infinite-Dimensional Compressed Sensing , 2016, Found. Comput. Math..

[25]  Barbara Kaltenbacher,et al.  Iterative Regularization Methods for Nonlinear Ill-Posed Problems , 2008, Radon Series on Computational and Applied Mathematics.

[26]  Avner Friedman,et al.  On the Uniqueness in the Inverse Conductivity Problem with One Measurement , 1988 .

[27]  M. D. Hoop,et al.  Uniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities , 2016, 1604.02948.

[28]  Maarten V. de Hoop,et al.  Lipschitz Stability of an Inverse Boundary Value Problem for a Schrödinger-Type Equation , 2012, SIAM J. Math. Anal..

[29]  Matteo Santacesaria,et al.  Infinite dimensional compressed sensing from anisotropic measurements and applications to inverse problems in PDE , 2017, Applied and Computational Harmonic Analysis.

[30]  David Isaacson,et al.  Electrical Impedance Tomography , 1999, SIAM Rev..

[31]  Boaz Haberman Uniqueness in Calderón’s Problem for Conductivities with Unbounded Gradient , 2014, 1410.2201.

[32]  E. Sincich,et al.  Lipschitz stability for the inverse conductivity problem for a conformal class of anisotropic conductivities , 2014, 1405.0475.

[33]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[34]  Ben Adcock,et al.  BREAKING THE COHERENCE BARRIER: A NEW THEORY FOR COMPRESSED SENSING , 2013, Forum of Mathematics, Sigma.

[35]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[36]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[37]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[38]  Evgeny Lakshtanov,et al.  Uniqueness in the Inverse Conductivity Problem for Complex-Valued Lipschitz Conductivities in the Plane , 2017, SIAM J. Math. Anal..

[39]  Exponential instability in the Gel'fand inverse problem on the energy intervals , 2010, 1012.2193.

[40]  E. Lakshtanov,et al.  A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy , 2015, 1509.06495.

[41]  Alberto Ruiz,et al.  Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities , 2010 .

[42]  Giuseppe Savaré,et al.  Regularity Results for Elliptic Equations in Lipschitz Domains , 1998 .

[43]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[44]  Matteo Santacesaria,et al.  Infinite-Dimensional Inverse Problems with Finite Measurements , 2019, Archive for Rational Mechanics and Analysis.

[45]  Angkana Ruland,et al.  Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data , 2018, Inverse Problems & Imaging.

[46]  Niculae Mandache,et al.  Exponential instability in an inverse problem for the Schrodinger equation , 2001 .

[47]  Formulae and equations for finding scattering data from the Dirichlet-to-Neumann map with nonzero background potential , 2004, cond-mat/0409751.

[48]  L. Rondi On the regularization of the inverse conductivity problem with discontinuous conductivities , 2008 .

[49]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[50]  M. Yamamoto,et al.  Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials , 2015, 1504.02207.

[51]  R. Novikov,et al.  A global stability estimate for the Gel'fand–Calderón inverse problem in two dimensions , 2010, 1008.4888.

[52]  V. Serov Inverse fixed energy scattering problem for the generalized nonlinear Schrödinger operator , 2012 .

[53]  Clarice Poon,et al.  A Consistent and Stable Approach to Generalized Sampling , 2014 .

[54]  R. Lavine Classical Limit of the Number of Quantum States , 1981 .

[55]  G. Stampacchia,et al.  Regular points for elliptic equations with discontinuous coefficients , 1963 .

[56]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[57]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[58]  Analytic Methods for Inverse Scattering Theory , 2004 .

[59]  Ben Adcock,et al.  Analyzing the structure of multidimensional compressed sensing problems through coherence , 2016, ArXiv.