Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I
暂无分享,去创建一个
[1] M. Nikolskii,et al. Approximation of Functions of Several Variables and Embedding Theorems , 1971 .
[2] Wang Heping,et al. Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets , 2004 .
[3] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[4] P. Wojtaszczyk,et al. A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .
[5] A S Romanyuk. Best approximations and widths of classes of periodic functions of several variables , 2008 .
[6] D. Dung. Stability in periodic multi-wavelet decompositions and recovery of functions , 2005 .
[7] Jan Vybíral,et al. The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness , 2009 .
[8] G. Weiss,et al. A First Course on Wavelets , 1996 .
[9] R. DeVore,et al. Hyperbolic Wavelet Approximation , 1998 .
[10] H. Schmeißer,et al. An unconditional basis in periodic spaces with dominating mixed smoothness properties , 1987 .
[11] Дауренбек Болысбекович Базарханов,et al. Оценки поперечников Фурье классов типа Никольского - Бесова и Лизоркина - Трибеля периодических функций многих переменных@@@Estimates of the Fourier Widths of Classes of Nikolskii - Besov and Lizorkin - Triebel Types of Periodic Functions of Several Variables , 2010 .
[12] Jan Vybíral. Function spaces with dominating mixed smoothness , 2006 .
[13] H. Schmeißer. Recent developments in the theory of function spaces with dominating mixed smoothness , 2007 .
[14] D. B. Bazarkhanov,et al. Phi-transform characterization of the Nikol'skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness , 2004 .
[15] H. Triebel. Theory Of Function Spaces , 1983 .
[16] O. V. Besov,et al. Integral representations of functions and imbedding theorems , 1978 .
[18] Timothy S. Murphy,et al. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .
[19] T. Ullrich. Smolyak ’ s Algorithm , Sampling on Sparse Grids and Sobolev Spaces of Dominating Mixed Smoothness , 2006 .
[20] É. M. Galeev. Approximation of classes of periodic functions of several variables by nuclear operators , 1990 .
[21] Э.М. Галеев,et al. Поперечники классов Бесова $B_{p,\theta}^r(\mathbb T^d)$@@@Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$ , 2001 .
[22] É. M. Galeev. Widths of the Besov Classes Bp,θr(Td) , 2001 .
[23] Y. Meyer. Wavelets and Operators , 1993 .
[24] Анатолий Сергеевич Романюк,et al. Наилучшие приближения и поперечники классов периодических функций многих переменных@@@Best approximations and widths of classes of periodic functions of several variables , 2008 .
[25] V. N. Temli︠a︡kov. Approximation of periodic functions , 1993 .
[26] Charles Fefferman,et al. Some Maximal Inequalities , 1971 .
[27] Winfried Sickel,et al. Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.
[28] H. Triebel,et al. Topics in Fourier Analysis and Function Spaces , 1987 .
[29] Boundedness of Product Type Pseudodifferential Operators on Spaces of Besov Type , 1987 .