Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I

AbstractWe obtain characterizations (and prove the corresponding equivalence of norms) of function spaces Bpqsm ($$ \mathbb{I} $$k) and Lpqsm ($$ \mathbb{I} $$k) of Nikol’skii-Besov and Lizorkin-Triebel types, respectively, in terms of representations of functions in these spaces by Fourier series with respect to a multiple system $$ \mathcal{W}_m^\mathbb{I} $$ of Meyer wavelets and in terms of sequences of the Fourier coefficients with respect to this system. We establish order-sharp estimates for the approximation of functions in Bpqsm ($$ \mathbb{I} $$) and Lpqsm ($$ \mathbb{I} $$k) by special partial sums of these series in the metric of Lr($$ \mathbb{I} $$k) for a number of relations between the parameters s, p, q, r, and m (s = (s1, ..., sn) ∈ ℝ+n, 1 ≤ p, q, r ≤ ∞, m = (m1, ..., mn) ∈ ℕn, k = m1 +... + mn, and $$ \mathbb{I} $$ = ℝ or $$ \mathbb{T} $$). In the periodic case, we study the Fourier widths of these function classes.

[1]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[2]  Wang Heping,et al.  Representation and approximation of multivariate functions with mixed smoothness by hyperbolic wavelets , 2004 .

[3]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[4]  P. Wojtaszczyk,et al.  A Mathematical Introduction to Wavelets: Wavelets and smoothness of functions , 1997 .

[5]  A S Romanyuk Best approximations and widths of classes of periodic functions of several variables , 2008 .

[6]  D. Dung Stability in periodic multi-wavelet decompositions and recovery of functions , 2005 .

[7]  Jan Vybíral,et al.  The Jawerth–Franke Embedding of Spaces with Dominating Mixed Smoothness , 2009 .

[8]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[9]  R. DeVore,et al.  Hyperbolic Wavelet Approximation , 1998 .

[10]  H. Schmeißer,et al.  An unconditional basis in periodic spaces with dominating mixed smoothness properties , 1987 .

[11]  Дауренбек Болысбекович Базарханов,et al.  Оценки поперечников Фурье классов типа Никольского - Бесова и Лизоркина - Трибеля периодических функций многих переменных@@@Estimates of the Fourier Widths of Classes of Nikolskii - Besov and Lizorkin - Triebel Types of Periodic Functions of Several Variables , 2010 .

[12]  Jan Vybíral Function spaces with dominating mixed smoothness , 2006 .

[13]  H. Schmeißer Recent developments in the theory of function spaces with dominating mixed smoothness , 2007 .

[14]  D. B. Bazarkhanov,et al.  Phi-transform characterization of the Nikol'skii-Besov and Lizorkin-Triebel function spaces with mixed smoothness , 2004 .

[15]  H. Triebel Theory Of Function Spaces , 1983 .

[16]  O. V. Besov,et al.  Integral representations of functions and imbedding theorems , 1978 .

[17]  Estimates of the Fourier widths of classes of Nikol’skii—Besov and Lizorkin—Triebel types of periodic functions of several variables , 2010 .

[18]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[19]  T. Ullrich Smolyak ’ s Algorithm , Sampling on Sparse Grids and Sobolev Spaces of Dominating Mixed Smoothness , 2006 .

[20]  É. M. Galeev Approximation of classes of periodic functions of several variables by nuclear operators , 1990 .

[21]  Э.М. Галеев,et al.  Поперечники классов Бесова $B_{p,\theta}^r(\mathbb T^d)$@@@Widths of the Besov Classes $B_{p,\theta}^r(\mathbb T^d)$ , 2001 .

[22]  É. M. Galeev Widths of the Besov Classes Bp,θr(Td) , 2001 .

[23]  Y. Meyer Wavelets and Operators , 1993 .

[24]  Анатолий Сергеевич Романюк,et al.  Наилучшие приближения и поперечники классов периодических функций многих переменных@@@Best approximations and widths of classes of periodic functions of several variables , 2008 .

[25]  V. N. Temli︠a︡kov Approximation of periodic functions , 1993 .

[26]  Charles Fefferman,et al.  Some Maximal Inequalities , 1971 .

[27]  Winfried Sickel,et al.  Spaces of functions of mixed smoothness and approximation from hyperbolic crosses , 2004, J. Approx. Theory.

[28]  H. Triebel,et al.  Topics in Fourier Analysis and Function Spaces , 1987 .

[29]  Boundedness of Product Type Pseudodifferential Operators on Spaces of Besov Type , 1987 .