Effective postprocessing for equilibration a posteriori error estimators

Guaranteed error control via fully discrete a posteriori error estimators is possible with typical overestimation between 1.25 and 2 in simple computer benchmarks. The equilibration techniques due to Braess and that due to Luce–Wohlmuth are efficient tools with an accuracy limited by the hyper-circle threshold. This motivates postprocessing strategies and the analysis of successive improvements of guaranteed upper error bounds with a few pcg iterations result in reduced overestimation factors between 1 and 1.25. Numerical simulations for three classes of applications illustrate the efficiency for the Poisson model problem with and without jumping coefficients or a simple obstacle problem.

[1]  S. Repin A Posteriori Estimates for Partial Differential Equations , 2008 .

[2]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[3]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[4]  David Yang Gao,et al.  Advances in mechanics and mathematics , 2002 .

[5]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[6]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[7]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[8]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Ronald H. W. Hoppe,et al.  Element-oriented and edge-oriented local error estimators for nonconforming finite element methods , 1996 .

[11]  Carsten Carstensen,et al.  A posteriori error estimator competition for conforming obstacle problems , 2013 .

[12]  Jan Valdman,et al.  Minimization of Functional Majorant in a Posteriori Error Analysis Based on H(div) Multigrid-Preconditioned CG Method , 2009, Adv. Numer. Anal..

[13]  Stefan A. Sauter,et al.  A Posteriori Error Estimation for the Dirichlet Problem with Account of the Error in the Approximation of Boundary Conditions , 2003, Computing.

[14]  L. D. Marini An Inexpensive Method for the Evaluation of the Solution of the Lowest Order Raviart–Thomas Mixed Method , 1985 .

[15]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis: Oden/A Posteriori , 2000 .

[16]  Barbara I. Wohlmuth,et al.  A Local A Posteriori Error Estimator Based on Equilibrated Fluxes , 2004, SIAM J. Numer. Anal..

[17]  Carsten Carstensen,et al.  Computational survey on a posteriori error estimators for nonconforming finite element methods for the Poisson problem , 2013, J. Comput. Appl. Math..

[18]  Carsten Carstensen,et al.  An experimental survey of a posteriori Courant finite element error control for the Poisson equation , 2001, Adv. Comput. Math..

[19]  Carsten Carstensen,et al.  Inhomogeneous Dirichlet conditions in a priori and a posteriori finite element error analysis , 2004, Numerische Mathematik.

[20]  Carsten Carstensen,et al.  Averaging techniques yield reliable a posteriori finite element error control for obstacle problems , 2004, Numerische Mathematik.

[21]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[22]  Dietrich Braess,et al.  A posteriori error estimators for obstacle problems – another look , 2005, Numerische Mathematik.

[23]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[24]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[25]  R. Hoppe,et al.  A review of unified a posteriori finite element error control , 2012 .

[26]  Carsten Carstensen,et al.  Estimator competition for Poisson problems , 2010 .

[27]  Carsten Carstensen,et al.  Computational Survey on A Posteriori Error Estimators for the Crouzeix–Raviart Nonconforming Finite Element Method for the Stokes Problem , 2014, Comput. Methods Appl. Math..

[28]  Mario S. Mommer,et al.  A Goal-Oriented Adaptive Finite Element Method with Convergence Rates , 2009, SIAM J. Numer. Anal..

[29]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..