The homotopy type of elliptic arrangements

We give combinatorial models for the homotopy type of complements of elliptic arrangements (i.e., certain sets of abelian subvarieties in a product of elliptic curves). We give a presentation of the fundamental group of such spaces and, as an application, we treat the case of ordered configuration spaces of elliptic curves. Our models are finite polyhedral CW complexes, and our combinatorial tools of choice are acyclic categories (small categories without loops). As a stepping stone, we give a characterization of which acyclic categories arise as face categories of polyhedral CW complexes.

[1]  S. Lane Categories for the Working Mathematician , 1971 .

[2]  Alex Fink,et al.  Matroids Over a Ring , 2012 .

[3]  S. Maclane,et al.  Categories for the Working Mathematician , 1971 .

[4]  Roberto Pagaria Poincaré polynomial of elliptic arrangements is not determined by the Tutte polynomial , 2020, Discret. Math..

[5]  Cohomology of the complement to an elliptic arrangement , 2011, 1106.5735.

[6]  Emanuele Delucchi,et al.  Orlik-Solomon type presentations for the cohomology algebra of toric arrangements , 2019, Transactions of the American Mathematical Society.

[7]  Alexander I. Suciu Around the tangent cone theorem , 2015, 1502.02279.

[8]  Luca Moci,et al.  Arithmetic matroids, the Tutte polynomial and toric arrangements , 2011 .

[9]  Emanuele Delucchi,et al.  Minimality of toric arrangements , 2011, 1112.5041.

[11]  Dmitry N. Kozlov,et al.  Combinatorial Algebraic Topology , 2007, Algorithms and computation in mathematics.

[12]  Roberto Pagaria Configuration spaces of points in an elliptic curve , 2018 .

[13]  C. Concini,et al.  A differential algebra and the homotopy type of the complement of a toric arrangement , 2020, Rendiconti Lincei - Matematica e Applicazioni.

[14]  Emanuele Delucchi,et al.  Shellability of Posets of Labeled Partitions and Arrangements Defined by Root Systems , 2019, Electron. J. Comb..

[15]  Roberto Pagaria Two examples of toric arrangements , 2019, J. Comb. Theory, Ser. A.

[16]  James W. Walker,et al.  Canonical Homeomorphisms of Posets , 1988, Eur. J. Comb..

[17]  D. Gonçalves,et al.  On the structure of surface pure braid groups , 2004 .

[18]  C. Concini,et al.  Projective Wonderful Models for Toric Arrangements , 2016, 1608.08746.

[19]  Cambridge University Press , 2021 .

[20]  Mario Salvetti,et al.  Topology of the complement of real hyperplanes in ℂN , 1987 .

[21]  G. Ziegler Lectures on Polytopes , 1994 .

[22]  C. Concini,et al.  Cohomology rings of compactifications of toric arrangements , 2018, Algebraic & Geometric Topology.

[23]  Ye Liu,et al.  G-Tutte Polynomials and Abelian Lie Group Arrangements , 2017, International Mathematics Research Notices.

[24]  Cl'ement Dupont,et al.  The Orlik-Solomon model for hypersurface arrangements , 2013, 1302.2103.

[25]  Luca Moci,et al.  The multivariate arithmetic Tutte polynomial , 2012 .

[26]  M. Salvetti,et al.  Discrete) Morse Theory on Configuration Spaces , 2011 .

[27]  Combinatorics and topology of toric arrangements defined by root systems , 2008, 0912.5458.

[28]  Christin Bibby Cohomology of abelian arrangements , 2015 .

[29]  M. Bridson,et al.  Metric Spaces of Non-Positive Curvature , 1999 .

[30]  Anders Björner,et al.  Posets, Regular CW Complexes and Bruhat Order , 1984, Eur. J. Comb..

[31]  On presentations of surface braid groups , 2001, math/0110129.

[32]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[33]  C. Procesi,et al.  On the geometry of toric arrangements , 2005 .

[34]  Roberto Pagaria The connection between combinatorics and cohomology of elliptic arrangements , 2018, 1805.04906.

[35]  A. Björner,et al.  Combinatorics of Coxeter Groups , 2005 .

[36]  A Salvetti complex for Toric Arrangements and its fundamental group , 2011, 1101.4111.

[37]  Representation stability for the cohomology of arrangements associated to root systems , 2016, 1603.08131.

[38]  Emanuele Delucchi,et al.  Group actions on semimatroids , 2015, Adv. Appl. Math..

[39]  G. Ziegler,et al.  Combinatorial stratification of complex arrangements , 1992 .

[40]  Sakinah,et al.  Vol. , 2020, New Medit.

[41]  Combinatorics of toric arrangements , 2017, Rendiconti Lincei - Matematica e Applicazioni.