Eigenvalues of a real supersymmetric tensor

[1]  Fei Wang,et al.  Comments on "Explicit criterion for the positive definiteness of a general quartic form" , 2005, IEEE Trans. Autom. Control..

[2]  Kok Lay Teo,et al.  Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..

[3]  B. Sturmfels SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .

[4]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[5]  C. D'Andrea,et al.  Explicit formulas for the multivariate resultant , 2000, math/0007036.

[6]  M. Fu Comments on "A procedure for the positive definiteness of forms of even order" , 1998, IEEE Trans. Autom. Control..

[7]  M. A. Hasan,et al.  A procedure for the positive definiteness of forms of even order , 1996, IEEE Trans. Autom. Control..

[8]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[9]  Bernd Sturmfels,et al.  Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.

[10]  E. Jury,et al.  Positivity and nonnegativity conditions of a quartic equation and related problems , 1981 .

[11]  N. Bose,et al.  General procedure for multivariable polynomial positivity test with control applications , 1976 .

[12]  B. Anderson,et al.  Output feedback stabilization and related problems-solution via decision methods , 1975 .

[13]  N. Bose,et al.  Algorithm for stability test of multidimensional filters , 1974 .

[14]  N. Bose,et al.  Tellegen's theorem and multivariable realizability theory† , 1974 .

[15]  Jay C. Hsu,et al.  Modern Control Principles and Applications , 1968 .

[16]  W. Ku Explicit criterion for the positive definiteness of a general quartic form , 1965 .

[17]  Journal of Symbolic Computation , 2022 .