Eigenvalues of a real supersymmetric tensor
暂无分享,去创建一个
[1] Fei Wang,et al. Comments on "Explicit criterion for the positive definiteness of a general quartic form" , 2005, IEEE Trans. Autom. Control..
[2] Kok Lay Teo,et al. Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..
[3] B. Sturmfels. SOLVING SYSTEMS OF POLYNOMIAL EQUATIONS , 2002 .
[4] Phillip A. Regalia,et al. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..
[5] C. D'Andrea,et al. Explicit formulas for the multivariate resultant , 2000, math/0007036.
[6] M. Fu. Comments on "A procedure for the positive definiteness of forms of even order" , 1998, IEEE Trans. Autom. Control..
[7] M. A. Hasan,et al. A procedure for the positive definiteness of forms of even order , 1996, IEEE Trans. Autom. Control..
[8] I. M. Gelʹfand,et al. Discriminants, Resultants, and Multidimensional Determinants , 1994 .
[9] Bernd Sturmfels,et al. Algorithms in invariant theory , 1993, Texts and monographs in symbolic computation.
[10] E. Jury,et al. Positivity and nonnegativity conditions of a quartic equation and related problems , 1981 .
[11] N. Bose,et al. General procedure for multivariable polynomial positivity test with control applications , 1976 .
[12] B. Anderson,et al. Output feedback stabilization and related problems-solution via decision methods , 1975 .
[13] N. Bose,et al. Algorithm for stability test of multidimensional filters , 1974 .
[14] N. Bose,et al. Tellegen's theorem and multivariable realizability theory† , 1974 .
[15] Jay C. Hsu,et al. Modern Control Principles and Applications , 1968 .
[16] W. Ku. Explicit criterion for the positive definiteness of a general quartic form , 1965 .
[17] Journal of Symbolic Computation , 2022 .