Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short‐range penetration correction up to quadrupoles

We propose a general coupling of the Smooth Particle Mesh Ewald SPME approach for distributed multipoles to a short‐range charge penetration correction modifying the charge‐charge, charge‐dipole and charge‐quadrupole energies. Such an approach significantly improves electrostatics when compared to ab initio values and has been calibrated on Symmetry‐Adapted Perturbation Theory reference data. Various neutral molecular dimers have been tested and results on the complexes of mono‐ and divalent cations with a water ligand are also provided. Transferability of the correction is adressed in the context of the implementation of the AMOEBA and SIBFA polarizable force fields in the TINKER‐HP software. As the choices of the multipolar distribution are discussed, conclusions are drawn for the future penetration‐corrected polarizable force fields highlighting the mandatory need of non‐spurious procedures for the obtention of well balanced and physically meaningful distributed moments. Finally, scalability and parallelism of the short‐range corrected SPME approach are addressed, demonstrating that the damping function is computationally affordable and accurate for molecular dynamics simulations of complex bio‐ or bioinorganic systems in periodic boundary conditions. © 2016 Wiley Periodicals, Inc.

[1]  Benjamin Stamm,et al.  Fast Domain Decomposition Algorithm for Continuum Solvation Models: Energy and First Derivatives. , 2013, Journal of chemical theory and computation.

[2]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[3]  Pengyu Y. Ren,et al.  Classical electrostatics for biomolecular simulations. , 2014, Chemical reviews.

[4]  J. Piquemal,et al.  New intermolecular benchmark calculations on the water dimer: SAPT and supermolecular post‐Hartree–Fock approaches , 2009 .

[5]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[6]  Nohad Gresh,et al.  Inclusion of the ligand field contribution in a polarizable molecular mechanics: SIBFA‐LF , 2003, J. Comput. Chem..

[7]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[8]  D. Truhlar,et al.  Screened Electrostatic Interactions in Molecular Mechanics. , 2014, Journal of chemical theory and computation.

[9]  Jesús S. Dehesa,et al.  Insight into the informational-structure behavior of the Diels-Alder reaction of cyclopentadiene and maleic anhydride , 2014, Journal of Molecular Modeling.

[10]  L. Nilsson,et al.  On the truncation of long-range electrostatic interactions in DNA. , 2000, Biophysical journal.

[11]  Nohad Gresh,et al.  S/G-1: an ab initio force-field blending frozen Hermite Gaussian densities and distributed multipoles. Proof of concept and first applications to metal cations. , 2014, The journal of physical chemistry. A.

[12]  B. Brooks,et al.  The effects of truncating long‐range forces on protein dynamics , 1989, Proteins.

[13]  E. R. Smith Electrostatic energy in ionic crystals , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  William H. Fink,et al.  Frozen fragment reduced variational space analysis of hydrogen bonding interactions. Application to the water dimer , 1987 .

[15]  Victor Guallar,et al.  Archives of Biochemistry and Biophysics , 1951, Nature.

[16]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[17]  Journal of Chemical Physics , 1932, Nature.

[18]  Nohad Gresh,et al.  Toward a Separate Reproduction of the Contributions to the Hartree-Fock and DFT Intermolecular Interaction Energies by Polarizable Molecular Mechanics with the SIBFA Potential. , 2007, Journal of chemical theory and computation.

[19]  Benjamin Stamm,et al.  Quantum, classical, and hybrid QM/MM calculations in solution: general implementation of the ddCOSMO linear scaling strategy. , 2014, The Journal of chemical physics.

[20]  Harvey F. Lodish,et al.  MOLECULAR.CELL.BIOLOGY 5TH.ED , 2003 .

[21]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[22]  S. Grimme,et al.  Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Nohad Gresh,et al.  Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution. , 2003, The journal of physical chemistry. A.

[24]  Nohad Gresh,et al.  Anisotropic, Polarizable Molecular Mechanics Studies of Inter- and Intramolecular Interactions and Ligand-Macromolecule Complexes. A Bottom-Up Strategy. , 2007, Journal of chemical theory and computation.

[25]  Jean-Philip Piquemal,et al.  Hydration gibbs free energies of open and closed shell trivalent lanthanide and actinide cations from polarizable molecular dynamics , 2014, Journal of Molecular Modeling.

[26]  P. Claverie,et al.  The exact multicenter multipolar part of a molecular charge distribution and its simplified representations , 1988 .

[27]  Mark S. Gordon,et al.  Evaluation of Charge Penetration Between Distributed Multipolar Expansions , 2000 .

[28]  Matthew L. Leininger,et al.  Anchoring the water dimer potential energy surface with explicitly correlated computations and focal point analyses , 2002 .

[29]  G. Yarrington Molecular Cell Biology , 1987, The Yale Journal of Biology and Medicine.

[30]  Celeste Sagui,et al.  Towards an accurate representation of electrostatics in classical force fields: efficient implementation of multipolar interactions in biomolecular simulations. , 2004, The Journal of chemical physics.

[31]  Brian J. Smith,et al.  Transition structures for the interchange of hydrogen atoms within the water dimer , 1990 .

[32]  W. Mooij,et al.  Testing the quality of some recent water-water potentials , 2003 .

[33]  Nohad Gresh,et al.  A supervised fitting approach to force field parametrization with application to the SIBFA polarizable force field , 2014, J. Comput. Chem..

[34]  Tai-Sung Lee,et al.  A variational linear-scaling framework to build practical, efficient next-generation orbital-based quantum force fields. , 2013, Journal of chemical theory and computation.

[35]  P. Claverie,et al.  Theoretical studies of molecular conformation. Derivation of an additive procedure for the computation of intramolecular interaction energies. Comparison withab initio SCF computations , 1984 .

[36]  Benjamin Stamm,et al.  Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations , 2014 .

[37]  Jean-Philip Piquemal,et al.  Gaussian Multipole Model (GMM). , 2010, Journal of chemical theory and computation.

[38]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[39]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[40]  K. Szalewicz,et al.  Pair potential for helium from symmetry-adapted perturbation theory calculations and from supermolecular data. , 2007, The Journal of chemical physics.

[41]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[42]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[43]  P. Popelier,et al.  Potential energy surfaces fitted by artificial neural networks. , 2010, The journal of physical chemistry. A.

[44]  Nohad Gresh,et al.  General Model for Treating Short-Range Electrostatic Penetration in a Molecular Mechanics Force Field , 2015, Journal of chemical theory and computation.

[45]  John B. O. Mitchell,et al.  Gaussian multipoles in practice: Electrostatic energies for intermolecular potentials , 1994, J. Comput. Chem..

[46]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[47]  Mark S. Gordon,et al.  Damping functions in the effective fragment potential method , 2009 .

[48]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[49]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[50]  A. Stone Electrostatic damping functions and the penetration energy. , 2011, The journal of physical chemistry. A.

[51]  Matthew L. Leininger,et al.  Psi4: an open‐source ab initio electronic structure program , 2012 .

[52]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[53]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1978, Archives of biochemistry and biophysics.

[54]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[55]  T. Darden,et al.  Towards a force field based on density fitting. , 2006, The Journal of chemical physics.

[56]  C. Sherrill,et al.  Origin of the surprising enhancement of electrostatic energies by electron-donating substituents in substituted sandwich benzene dimers. , 2011, Journal of the American Chemical Society.

[57]  T. Darden,et al.  Simple Formulas for Improved Point-Charge Electrostatics in Classical Force Fields and Hybrid Quantum Mechanical/Molecular Mechanical Embedding. , 2008, International journal of quantum chemistry.

[58]  Wei Yang,et al.  Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential. , 2012, Journal of chemical theory and computation.

[59]  L. Dardenne,et al.  General methodology to optimize damping functions to account for charge penetration effects in electrostatic calculations using multicentered multipolar expansions. , 2008, Journal of Physical Chemistry A.