Hydrothermal synthesis of controllable size, morphology and optical properties of β-NaGdF4: Eu3+ microcrystals

[1]  Chunhua Lu,et al.  Controlled synthesis of β-NaYF4:Yb3+/Er3+ microstructures with morphology- and size-dependent upconversion luminescence , 2015 .

[2]  Chunhua Lu,et al.  Hexagonal NaYF4:Yb3+/Er3+ nano/micro-structures: Controlled hydrothermal synthesis and morphology-dependent upconversion luminescence , 2015 .

[3]  Jinxian Wang,et al.  Multicolor tunable luminescence and paramagnetic properties of NaGdF₄:Tb³⁺/Sm³⁺ multifunctional nanomaterials. , 2014, Dalton transactions.

[4]  Weibo Chen,et al.  Lanthanide-doped NaGdF4 core-shell nanoparticles for non-contact self-referencing temperature sensors. , 2014, Nanoscale.

[5]  Chunhua Lu,et al.  Controllable synthesis, formation mechanism and upconversion luminescence of β-NaYF4:Yb3+/Er3+ microcrystals by hydrothermal process , 2013 .

[6]  J. Misiewicz,et al.  Selective excitation of Eu3+ in the core of small β-NaGdF4 nanocrystals , 2013 .

[7]  A. K. Tyagi,et al.  Multicolored and white-light phosphors based on doped GdF3 nanoparticles and their potential bio-applications. , 2012, Journal of colloid and interface science.

[8]  Sifu Tang,et al.  Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods , 2011 .

[9]  Fei He,et al.  Self-assembled β-NaGdF4 microcrystals: hydrothermal synthesis, morphology evolution, and luminescence properties. , 2011, Inorganic chemistry.

[10]  D. Cristofori,et al.  Structural and photoluminescence properties of ZrO2:Eu3+ @ SiO2 nanophosphors as a function of annealing temperature , 2010 .

[11]  S. Hongwei,et al.  Electrospinning preparation and properties of NaGdF4:Eu3+ nanowires , 2010 .

[12]  J. Hao,et al.  Light Emission Due to Energy Transfer from Gd3 + to Eu3 + Ions in Paramagnetic NaGdF4 : Eu3 + Submicrometer Disks , 2010 .

[13]  Yongsheng Liu,et al.  A Strategy to Achieve Efficient Dual‐Mode Luminescence of Eu3+ in Lanthanides Doped Multifunctional NaGdF4 Nanocrystals , 2010, Advanced materials.

[14]  L. Pei,et al.  Branch-shaped NaGdF4:Eu3+ nanocrystals: Selective synthesis, and photoluminescence properties , 2010 .

[15]  M. Haase,et al.  Crystal Phase Control of NaGdF4:Eu3+ Nanocrystals: Influence of the Fluoride Concentration and Molar Ratio between NaF and GdF3 , 2010 .

[16]  Jun Lin,et al.  Self-Assembled 3D Urchin-Like NaY(MoO4)(2):EU3+/Tb3+ Microarchitectures: Hydrothermal Synthesis and Tunable Emission Colors , 2010 .

[17]  Lili Wang,et al.  Synthesis and upconversion luminescence properties of NaYF4:yb^3+/Er^3+ microspheres , 2009 .

[18]  Lili Wang,et al.  β-NaYF4 and β-NaYF4:Eu3+ Microstructures: Morphology Control and Tunable Luminescence Properties , 2009 .

[19]  Shanshan Huang,et al.  Shape-Controllable Synthesis and Upconversion Properties of Lutetium Fluoride (Doped with Yb3+/Er3+) Microcrystals by Hydrothermal Process , 2008 .

[20]  Xiaogang Liu,et al.  Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. , 2008, Journal of the American Chemical Society.

[21]  Jun Lin,et al.  LaF3, CeF3, CeF3:Tb3+, and CeF3:Tb3+@LaF3 (Core−Shell) Nanoplates: Hydrothermal Synthesis and Luminescence Properties. , 2008 .

[22]  Jun Lin,et al.  Different Microstructures of β-NaYF4 Fabricated by Hydrothermal Process: Effects of pH Values and Fluoride Sources , 2007 .

[23]  Jun Lin,et al.  Highly uniform and monodisperse beta-NaYF(4):Ln(3+) (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. , 2007, Inorganic chemistry.

[24]  F. V. Veggel,et al.  Conformational characterization of Eu3+-doped LaF3core-shell nanoparticles through luminescence anisotropy studies , 2007 .

[25]  Zhengquan Li,et al.  Monodisperse silica-coated polyvinylpyrrolidone/NaYF(4) nanocrystals with multicolor upconversion fluorescence emission. , 2006, Angewandte Chemie.

[26]  Hongjiang Liu,et al.  Optical Spectroscopy and Visible Upconversion Studies of YVO4:Er3+ Nanocrystals Synthesized by a Hydrothermal Process , 2006 .

[27]  W. Ryba-Romanowski,et al.  New luminescent systems based on fluoride crystals doped with rare earth ions , 2006 .

[28]  W. Stręk,et al.  Spectral properties of Eu3+ doped NaGdF4 nanocrystals , 2005 .

[29]  W. Stręk,et al.  Comparison of different NaGdF4:Eu3+ synthesis routes and their influence on its structural and luminescent properties , 2005 .

[30]  Shihua Huang,et al.  VUV excited luminescence of MGdF4:Eu3+ (M=Na, K, NH4) , 2004 .

[31]  W. Stręk,et al.  Structural and luminescent properties of nano-sized NaGdF4:Eu3+ synthesised by wet-chemistry route , 2004 .

[32]  Markus P. Hehlen,et al.  Hexagonal Sodium Yttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors , 2004 .

[33]  M. Haase,et al.  Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. , 2003, Angewandte Chemie.

[34]  Yingxia Wang,et al.  Hydrothermal synthesis and luminescence properties of NaGdF4 : Eu , 2002 .

[35]  Clifford R. Pollock,et al.  Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles , 2000 .

[36]  M. Haase,et al.  Wet‐Chemical Synthesis of Doped Colloidal Nanomaterials: Particles and Fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce,Tb , 1999 .

[37]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[38]  T. Jüstel,et al.  New Developments in the Field of Luminescent Materials for Lighting and Displays. , 1998, Angewandte Chemie.

[39]  M. P. Menon,et al.  Complexation, solubilities and thermodynamic functions for cerium(III) fluoride-water system , 1986 .