The L(h, 1, 1)-labelling problem for trees

Let h>=1 be an integer. An L(h,1,1)-labelling of a (finite or infinite) graph is an assignment of nonnegative integers (labels) to its vertices such that adjacent vertices receive labels with difference at least h, and vertices distance 2 or 3 apart receive distinct labels. The span of such a labelling is the difference between the maximum and minimum labels used, and the minimum span over all L(h,1,1)-labellings is called the @l"h","1","1-number of the graph. We prove that, for any integer h>=1 and any finite tree T of diameter at least 3 or infinite tree T of finite maximum degree, max{max"u"v"@?"E"("T")min{d(u),d(v)}+h-1,@D"2(T)-1}@[email protected]"h","1","1(T)@[email protected]"2(T)+h-1, and both lower and upper bounds are attainable, where @D"2(T) is the maximum total degree of two adjacent vertices. Moreover, if h is less than or equal to the minimum degree of a non-pendant vertex of T, then @l"h","1","1(T)@[email protected]"2(T)+h-2. In particular, @D"2(T)[email protected][email protected]"2","1","1(T)@[email protected]"2(T). Furthermore, if T is a caterpillar and h>=2, then max{max"u"v"@?"E"("T")min{d(u),d(v)}+h-1,@D"2(T)-1}@[email protected]"h","1","1(T)@[email protected]"2(T)+h-2 with both lower and upper bounds achievable.

[1]  Jirí Fiala,et al.  Computational Complexity of the Distance Constrained Labeling Problem for Trees (Extended Abstract) , 2008, ICALP.

[2]  P. Paulraja,et al.  Powers of chordal graphs , 1983 .

[3]  Andrzej Pelc,et al.  Labeling trees with a condition at distance two , 2006, Discret. Math..

[4]  Jerrold R. Griggs,et al.  Labelling Graphs with a Condition at Distance 2 , 1992, SIAM J. Discret. Math..

[5]  Jirí Fiala,et al.  Distance Constrained Labelings of Graphs of Bounded Treewidth , 2005, ICALP.

[6]  Jirí Fiala,et al.  Distance Constrained Labeling of Precolored Trees , 2001, ICTCS.

[7]  Sanming Zhou Distance Labelling Problems for Hypercubes and Hamming Graphs - A Survey , 2007, Electron. Notes Discret. Math..

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Richard B. Tan,et al.  L(h, 1, 1)-Labeling of Outerplanar Graphs , 2006, SIROCCO.

[10]  Tiziana Calamoneri,et al.  The L(h, k)-Labelling Problem: A Survey and Annotated Bibliography , 2006, Comput. J..

[11]  John P. Georges,et al.  Labeling trees with a condition at distance two , 2003, Discret. Math..

[12]  Sanming Zhou,et al.  No-hole 2-distant colorings for Cayley graphs on finitely generated abelian groups , 2007, Discret. Math..

[13]  Sanming Zhou,et al.  Labelling Cayley Graphs on Abelian Groups , 2005, SIAM J. Discret. Math..

[14]  Panos M. Pardalos,et al.  A coloring problem on the n-cube , 2000, Discret. Appl. Math..

[15]  W. K. Hale Frequency assignment: Theory and applications , 1980, Proceedings of the IEEE.

[16]  Sanming Zhou A channel assignment problem for optical networks modelled by Cayley graphs , 2004, Theor. Comput. Sci..

[17]  Sanming Zhou,et al.  Distance-two labellings of Hamming graphs , 2009, Discret. Appl. Math..

[18]  Daphne Der-Fen Liu,et al.  On L(d, 1)-labelings of graphs , 2000, Discret. Math..

[19]  Gilbert MURAZ,et al.  L 2 英語摩擦音の知覚における高周波数帯域情報の利用 , 2012 .

[20]  Jan Kratochvíl,et al.  Fixed-parameter complexity of lambda-labelings , 2001, Discret. Appl. Math..

[21]  Ding-Zhu Du,et al.  New bounds on a hypercube coloring problem , 2002, Inf. Process. Lett..

[22]  Gerard J. Chang,et al.  The L(2, 1)-Labeling Problem on Graphs , 1996, SIAM J. Discret. Math..

[23]  Sanming Zhou A distance-labelling problem for hypercubes , 2008, Discret. Appl. Math..

[24]  Richard B. Tan,et al.  L(h, 1, 1)-labeling of outerplanar graphs , 2006, Math. Methods Oper. Res..