Near-optimum dynamic regulation of a dc-dc converter is obtained by adding feed-forward of output current and input voltage to a current-mode controller. The results are a) near zero output impedance and audio susceptibility, from dc to nearly the switching frequency, b) much reduced magnitude, duration, and energy content of the output-voltage transient after a transient change of output current or input voltage, and c) smaller size and lower cost for the output filter capacitor. Feed-forward is applicable to both forward and flyback types of converters and to all types of current-mode control. The cost of feed-forward for a forward-type converter is a low-power resistor and a current sensor; a flyback-type converter needs also an analog multiplier-divider integrated circuit (IC). A description is given of the control loop, conditions to achieve extremely good transient response, calculation of the peak deviation of the output voltage for a step load change, practical methods for current feed-forward, and experimental results. The theoretical predictions are in excellent agreement with the experimental results. In the experiments, adding output-current feed-forward reduced the transient deviations of output voltage by factors of 6.7 in magnitude, 50 in duration, and 335 in energy content. The added components were a 1/4-W resistor and a 12-mm ferrite toroid with a 10-turn winding.
[1]
A. Weinberg,et al.
LC3: Application to voltage regulation
,
1977
.
[2]
Harry A. Owen,et al.
Fast-response free-running DC-to-DC converter employing a state-trajectory control law
,
1977,
1977 IEEE Power Electronics Specialists Conference.
[3]
M. Goodman,et al.
Current mode control of switching regulators
,
1984
.
[4]
Cecil Deisch,et al.
Simple switching control method changes power converter into a current source
,
1978,
1978 IEEE Power Electronics Specialists Conference.
[5]
Istvan Novak,et al.
Instabilities in current-mode controlled switching voltage regulators
,
1981,
1981 IEEE Power Electronics Specialists Conference.
[6]
Thomas G. Wilson,et al.
Analytic derivation and evaluation of a state-trajectory control law for DC-to-DC converters
,
1977,
1977 IEEE Power Electronics Specialists Conference.
[7]
M. Clique,et al.
A General Model for Switching Converters
,
1977,
IEEE Transactions on Aerospace and Electronic Systems.