Minimum-Weight Spanning Tree Construction in O(log log n) Communication Rounds

We consider a simple model for overlay networks, where all n processes are connected to all other processes, and each message contains at most O(log n) bits. For this model, we present a distributed algorithm which constructs a minimum-weight spanning tree in O(log log n) communication rounds, where in each round any process can send a message to every other process. If message size is $\Theta(n^\epsilon)$ for some $\epsilon>0$, then the number of communication rounds is $O(\log{1\over\epsilon})$.

[1]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[2]  Baruch Awerbuch,et al.  Complexity of network synchronization , 1985, JACM.

[3]  Pierre A. Humblet,et al.  A Distributed Algorithm for Minimum-Weight Spanning Trees , 1983, TOPL.

[4]  David Peleg,et al.  A Near-Tight Lower Bound on the Time Complexity of Distributed Minimum-Weight Spanning Tree Construction , 2000, SIAM J. Comput..

[5]  Baruch Awerbuch,et al.  New Connectivity and MSF Algorithms for Shuffle-Exchange Network and PRAM , 1987, IEEE Transactions on Computers.

[6]  Jerome H. Saltzer,et al.  End-to-end arguments in system design , 1984, TOCS.

[7]  Richard Cole,et al.  Finding minimum spanning forests in logarithmic time and linear work using random sampling , 1996, SPAA '96.

[8]  Ben H. H. Juurlink,et al.  Communication-optimal parallel minimum spanning tree algorithms (extended abstract) , 1998, SPAA '98.

[9]  Robert E. Tarjan,et al.  Data structures and network algorithms , 1983, CBMS-NSF regional conference series in applied mathematics.

[10]  Boaz Patt-Shamir,et al.  Distributed MST for constant diameter graphs , 2001, PODC '01.

[11]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[12]  Baruch Awerbuch,et al.  Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems , 1987, STOC.

[13]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[14]  Kirk L. Johnson,et al.  Overcast: reliable multicasting with on overlay network , 2000, OSDI.