A Priori and A Posteriori Error Control of Discontinuous Galerkin Finite Element Methods for the Von K\'arm\'an Equations

This paper analyses discontinuous Galerkin finite element methods (DGFEM) to approximate a regular solution to the von Karman equations defined on a polygonal domain. A discrete inf-sup condition sufficient for the stability of the discontinuous Galerkin discretization of a well-posed linear problem is established and this allows the proof of local existence and uniqueness of a discrete solution to the non-linear problem with a Banach fixed point theorem. The Newton scheme is locally second-order convergent and appears to be a robust solution strategy up to machine precision. A comprehensive a priori and a posteriori energy-norm error analysis relies on one sufficiently large stabilization parameter and sufficiently fine triangulations. In case the other stabilization parameter degenerates towards infinity, the DGFEM reduces to a novel $C^0$ interior penalty method (IPDG). Moreover, a reliable and efficient a posteriori error analysis immediately follows for the DGFEM of this paper, while the different norms in the known $C^0$-IPDG lead to complications with some non-residual type remaining terms. Numerical experiments confirm the best-approximation results and the equivalence of the error and the error estimators. A related adaptive mesh-refining algorithm leads to optimal empirical convergence rates for a non convex domain.

[1]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[2]  Melvyn S. Berger,et al.  On von kármán's equations and the buckling of a thin elastic plate, I the clamped plate , 1967 .

[3]  Thirupathi Gudi,et al.  A new error analysis for discontinuous finite element methods for linear elliptic problems , 2010, Math. Comput..

[4]  L. Reinhart,et al.  On the numerical analysis of the Von Karman equations: Mixed finite element approximation and continuation techniques , 1982 .

[5]  Paul C. Fife,et al.  Von Kármán's equations and the buckling of a thin elastic plate, II plate with general edge conditions , 1968 .

[6]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[7]  Igor Mozolevski,et al.  A Priori Error Analysis for the hp-Version of the Discontinuous Galerkin Finite Element Method for the Biharmonic Equation , 2003 .

[8]  S. C. Brenner,et al.  An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem , 2010 .

[9]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Susanne C. Brenner,et al.  A C0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^0$$\end{document} interior penalty method for a von Kármán plate , 2016, Numerische Mathematik.

[12]  Neela Nataraj,et al.  A Nonconforming Finite Element Approximation for the von Karman Equations , 2015, 1506.08958.

[13]  Tetsuhiko Miyoshi,et al.  A mixed finite element method for the solution of the von Kármán equations , 1976 .

[14]  R. Rannacher,et al.  On the boundary value problem of the biharmonic operator on domains with angular corners , 1980 .

[15]  Igor Mozolevski,et al.  hp-Version a priori Error Analysis of Interior Penalty Discontinuous Galerkin Finite Element Approximations to the Biharmonic Equation , 2007, J. Sci. Comput..

[16]  Neela Nataraj,et al.  Conforming finite element methods for the von Kármán equations , 2016, Adv. Comput. Math..

[17]  F. Brezzi,et al.  Finite element approximations of the von Kármán equations , 1978 .

[18]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[19]  Susanne C. Brenner,et al.  Two-Level Additive Schwarz Preconditioners for a Weakly Over-Penalized Symmetric Interior Penalty Method , 2011, J. Sci. Comput..

[20]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[21]  G. Knightly,et al.  An existence theorem for the von Kármán equations , 1967 .

[22]  F. Brezzi,et al.  Finite dimensional approximation of nonlinear problems , 1981 .

[23]  Paul C. Fife,et al.  On von Karman's equations and the buckling of a thin elastic plate , 1966 .

[24]  Carsten Carstensen,et al.  Guaranteed lower eigenvalue bounds for the biharmonic equation , 2014, Numerische Mathematik.

[25]  Paul Houston,et al.  An a posteriori error indicator for discontinuous Galerkin approximations of fourth-order elliptic problems , 2011 .

[26]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[27]  L. Morley The Triangular Equilibrium Element in the Solution of Plate Bending Problems , 1968 .