Sedimentary rocks of early Mars.

Layered and massive outcrops on Mars, some as thick as 4 kilometers, display the geomorphic attributes and stratigraphic relations of sedimentary rock. Repeated beds in some locations imply a dynamic depositional environment during early martian history. Subaerial (such as eolian, impact, and volcaniclastic) and subaqueous processes may have contributed to the formation of the layers. Affinity for impact craters suggests dominance of lacustrine deposition; alternatively, the materials were deposited in a dry, subaerial setting in which atmospheric density, and variations thereof mimic a subaqueous depositional environment. The source regions and transport paths for the materials are not preserved.

[1]  C. Wentworth A Scale of Grade and Class Terms for Clastic Sediments , 1922, The Journal of Geology.

[2]  R. K. Sloan,et al.  Mariner IV Photography of Mars: Initial Results , 1965, Science.

[3]  B. Murray,et al.  Behavior of Carbon Dioxide and Other Volatiles on Mars , 1966, Science.

[4]  C. Sagan,et al.  An analysis of the Mariner-4 cratering statistics. , 1969 .

[5]  W. Hartmann Martian cratering. III - Theory of crater obliteration. , 1971 .

[6]  Robert P. Sharp,et al.  Mars: Fretted and chaotic terrains , 1973 .

[7]  James A. Cutts,et al.  Nature and origin of layered deposits of the Martian polar regions , 1973 .

[8]  W. Hartmann Martian Cratering, 4, Mariner 9 initial analysis of cratering chronology , 1973 .

[9]  L. Soderblom,et al.  Martian planetwide crater distributions - Implications for geologic history and surface processes , 1974 .

[10]  W. Ward Climatic variations on Mars: 1. Astronomical theory of insolation , 1974 .

[11]  C. Chapman Cratering on Mars. I - Cratering and obliteration history. II Implications for future cratering studies from Mariner 4 reanalysis , 1974 .

[12]  M. Malin,et al.  Climatic variations on Mars: 2. Evolution of carbon dioxide atmosphere and polar caps , 1974 .

[13]  K. Jones Evidence for an episode of crater obliteration intermediate in Martian history , 1974 .

[14]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[15]  F. Fanale Martian volatiles - Their degassing history and geochemical fate , 1976 .

[16]  D. Pieri Distribution of small channels on the Martian surface , 1976 .

[17]  G. Neukum,et al.  Mars: a standard crater curve and possible new time scale. , 1976, Science.

[18]  H. Masursky,et al.  Geology of the Valles Marineris: First analysis of imaging from the Viking 1 Orbiter Primary Mission , 1977 .

[19]  J. Burns,et al.  The astronomical theory of climatic change on Mars , 1980 .

[20]  S. Squyres,et al.  Origin and evolution of the layered deposits in the Valles Marineris, Mars , 1987 .

[21]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[22]  P. Christensen Global albedo variations on Mars: Implications for active aeolian transport, deposition, and erosion , 1988 .

[23]  S. Squyres Urey prize lecture: Water on Mars , 1989 .

[24]  Carol R. Stoker,et al.  The early environment and its evolution on Mars: Implication for life , 1989 .

[25]  T. McCord,et al.  An observational search for carbonates on Mars , 1989 .

[26]  Thermal imaging of the surface of Mars , 1989, Nature.

[27]  R. Craddock,et al.  Resurfacing of the Martian Highlands in the Amenthes and Tyrrhena region , 1990 .

[28]  M. Malin,et al.  Mars Observer camera , 1992 .

[29]  R. Craddock,et al.  Geomorphic evolution of the Martian highlands through ancient fluvial processes , 1993 .

[30]  R. Singer,et al.  Stratigraphy and erosional landforms of layered deposits in Valles Marineris, Mars , 1993 .

[31]  S. Squyres,et al.  Early Mars: How Warm and How Wet? , 1994, Science.

[32]  Michael H. Carr Water on early Mars. , 1996, Ciba Foundation symposium.

[33]  Kenneth S. Edgett,et al.  Water on early Mars: Possible subaqueous sedimentary deposits covering ancient cratered terrain in western Arabia and Sinus Meridiani , 1997 .

[34]  M E Davies,et al.  Early views of the martian surface from the Mars Orbiter Camera of Mars Global Surveyor. , 1998, Science.

[35]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[36]  A. McEwen,et al.  Voluminous volcanism on early Mars revealed in Valles Marineris , 1999, Nature.

[37]  W. Hartmann Martian cratering VI: Crater count isochrons and evidence for recent volcanism from Mars Global Surveyor , 1999 .

[38]  M. Malin,et al.  Groundwater formation of martian valleys , 1999, Nature.

[39]  A. McEwen,et al.  Terrestrial analogs and thermal models for Martian flood lavas , 1999 .

[40]  A. McEwen,et al.  Evidence for recent volcanism on Mars from crater counts , 1999, Nature.

[41]  N. Cabrol,et al.  Distribution, Classification, and Ages of Martian Impact Crater Lakes , 1999 .

[42]  R. Clark,et al.  Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evide , 2000 .

[43]  W. Hartmann,et al.  Elysium Planitia lava flows: Crater count chronology and geological implications , 2000 .

[44]  M. Malin,et al.  Meter-Scale Characteristics of Martian Channels and Valleys , 2000 .