Rank and simulation: the well-founded case

We consider the algorithmic problem of computing the maximal simulation preorder (and quotient) on acyclic labelled graphs. The acyclicity allows to exploit an inner structure on the set of nodes, that can be processed in stages according to a set-theoretic notion of rank. This idea, previously used for bisimulation computation, on the one hand improves on the performances of the ensuing procedure and, on the other hand, gives to the solution an orderly iterative flavour making the algorithmic idea more explicit. The computational complexity achieved is good as we obtain the best performing algorithm for simulation computation on acyclic graphs, in both time and space. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Journal of Logic and Computation following peer review. The version of record – Raffaella Gentilini, Alberto Policriti, and Carla Piazza Rank and simulation: the wellfounded case Journal of Logic and Computation(2015) 25(6):1331-1349, first published on line December 3 2013– is available online at: http://m.logcom.oxfordjournals.org/content/25/6/1331.

[1]  Stephan Merz,et al.  Model Checking , 2000 .

[2]  Jean-François Raskin,et al.  Quantitative Languages Defined by Functional Automata , 2011, CONCUR.

[3]  Agostino Dovier,et al.  An efficient algorithm for computing bisimulation equivalence , 2004, Theor. Comput. Sci..

[4]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[5]  Carla Piazza,et al.  Simulation as Coarsest Partition Problem , 2002, TACAS.

[6]  Thomas A. Henzinger,et al.  Computing simulations on finite and infinite graphs , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[7]  Siegfried Reich,et al.  Proceedings of the sixteenth ACM conference on Hypertext and hypermedia , 2005 .

[8]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[9]  Angelo Montanari,et al.  From Entity Relationship to XML Schema: a Graph-Theoretic Approach (Extended Abstract) , 2009, SEBD.

[10]  Agostino Dovier,et al.  Rank-Based Symbolic Bisimulation (and Model Checking) , 2002, WoLLIC.

[11]  Joseph Sifakis,et al.  Property preserving abstractions for the verification of concurrent systems , 1995, Formal Methods Syst. Des..

[12]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[13]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[14]  Domenico Cantone,et al.  Set Theory for Computing , 2001, Monographs in Computer Science.

[15]  Jean E. Rubin,et al.  Set theory for the mathematician , 1967 .

[16]  Orna Kupferman,et al.  Making Weighted Containment Feasible: A Heuristic Based on Simulation and Abstraction , 2012, CONCUR.

[17]  Jiajun Zhu,et al.  XSim: a new method for generating the simulation quotient of XML documents in a relational database (データ工学) , 2011 .

[18]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[19]  Rob J. van Glabbeek,et al.  Correcting a Space-Efficient Simulation Algorithm , 2008, CAV.

[20]  Klaus Schneider,et al.  A uniform approach to three-valued semantics for μ-calculus on abstractions of hybrid automata , 2010, International Journal on Software Tools for Technology Transfer.

[21]  Silvia Crafa,et al.  Saving Space in a Time Efficient Simulation Algorithm , 2009, ACSD.

[22]  Daniel Deutch,et al.  A quest for beauty and wealth (or, business processes for database researchers) , 2011, PODS.

[23]  Orna Grumberg,et al.  Simulation Based Minimization , 2000, CADE.

[24]  Tova Milo,et al.  Querying DAG-shaped Execution Traces Through Views , 2009, WebDB.

[25]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[26]  Dmitri Mirimanoff,et al.  Les antinomies de Russell et de Burali-Forti et le problème fondamental de la théorie des ensembles , 1917 .

[27]  Kenji Kashiwabara,et al.  Higher-order rank analysis for web structure , 2005, HYPERTEXT '05.

[28]  Carla Piazza,et al.  From Bisimulation to Simulation: Coarsest Partition Problems , 2003, Journal of Automated Reasoning.

[29]  Wilhelm Ackermann,et al.  Die Widerspruchsfreiheit der allgemeinen Mengenlehre , 1937 .

[30]  Dan Suciu,et al.  Data on the Web: From Relations to Semistructured Data and XML , 1999 .

[31]  Rance Cleaveland,et al.  Simulation Revisited , 2001, TACAS.

[32]  Francesco Ranzato,et al.  A New Efficient Simulation Equivalence Algorithm , 2007, 22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007).

[33]  Agostino Dovier,et al.  A Fast Bisimulation Algorithm , 2001, CAV.

[34]  Krishnendu Chatterjee,et al.  Quantitative languages , 2008, TOCL.

[35]  Orna Grumberg,et al.  Model checking and modular verification , 1994, TOPL.

[36]  Klaus Schneider,et al.  Successive Abstractions of Hybrid Automata for Monotonic CTL Model Checking , 2007, LFCS.

[37]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[38]  Klaus Schneider,et al.  A Uniform Approach to Three-Valued Semantics for µ-Calculus on Abstractions of Hybrid Automata , 2008, Haifa Verification Conference.

[39]  Prakash Ramanan Covering Indexes for XML Queries: Bisimulation - Simulation = Negation , 2003, VLDB.

[40]  George H. L. Fletcher,et al.  Efficient external-memory bisimulation on DAGs , 2012, SIGMOD Conference.