The Cattaneo type space-time fractional heat conduction equation
暂无分享,去创建一个
Dušan Zorica | Sanja Konjik | Teodor Atanacković | Ljubica Oparnica | D. Zorica | T. Atanacković | Ljubica Oparnica | S. Konjik | Dušan Zorica
[1] Teodor M. Atanackovic,et al. An Expansion Formula for Fractional Derivatives and its Application , 2004 .
[2] A. Compte,et al. The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .
[3] Francesco Mainardi,et al. Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..
[4] E. C. Oliveira,et al. On some fractional Green’s functions , 2009 .
[5] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[6] M. T. Cicero. FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .
[7] Hans Engler,et al. On the Speed of Spread for Fractional Reaction-Diffusion Equations , 2009, 0908.0024.
[8] Karl Heinz Hoffmann,et al. Fractional Diffusion, Irreversibility and Entropy , 2003 .
[9] J. Klafter,et al. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .
[10] Karl Heinz Hoffmann,et al. Fractional Diffusion and Entropy Production , 1998 .
[11] I. Müller,et al. Rational Extended Thermodynamics , 1993 .
[12] Teodor M. Atanackovic,et al. Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] Vasilii S Vladimirov. Equations of mathematical physics , 1971 .
[14] Enzo Orsingher,et al. THE SPACE-FRACTIONAL TELEGRAPH EQUATION AND THE RELATED FRACTIONAL TELEGRAPH PROCESS , 2003 .
[15] A. Hanyga,et al. Multidimensional solutions of space–fractional diffusion equations , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[16] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[17] Karl Heinz Hoffmann,et al. The superdiffusion entropy production paradox in the space-fractional case for extended entropies , 2010 .
[18] Linear Fractionally Damped Oscillator , 2009, 0908.1683.
[19] Miroslav Šilhavý,et al. The Mechanics and Thermodynamics of Continuous Media , 2002 .
[20] Teodor M. Atanackovic,et al. Time distributed-order diffusion-wave equation. I. Volterra-type equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[21] T. Atanacković,et al. Generalized wave equation in nonlocal elasticity , 2009 .
[22] H. Qi,et al. Solutions of the space-time fractional Cattaneo diffusion equation , 2011 .
[23] Stevan Pilipović,et al. A diffusion wave equation with two fractional derivatives of different order , 2007 .
[24] A. Eringen,et al. Nonlocal Continuum Field Theories , 2002 .
[25] T. Ruggeri,et al. Continuum approach to phonon gas and shape changes of second sound via shock waves theory , 1994 .
[26] B. Ross,et al. Fractional Calculus and Its Applications , 1975 .
[27] Luigi Preziosi,et al. Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .
[28] Y. Chen,et al. Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .
[29] Ljubica Oparnica,et al. Waves in fractional Zener type viscoelastic media , 2010, 1101.2966.
[30] Teodor M. Atanackovic,et al. Semilinear ordinary differential equation coupled with distributed order fractional differential equation , 2008, 0811.2871.
[31] Karl Heinz Hoffmann,et al. Tsallis and Rényi entropies in fractional diffusion and entropy production , 2000 .
[32] M. Chester. Second Sound in Solids , 1963 .
[33] E. C. Oliveira,et al. Differentiation to fractional orders and the fractional telegraph equation , 2008 .