The Cattaneo type space-time fractional heat conduction equation

The classical heat conduction equation is generalized using a generalized heat conduction law. In particular, we use the space-time Cattaneo heat conduction law that contains the Caputo symmetrized fractional derivative instead of gradient $${{\partial_x}}$$ and fractional time derivative instead of the first order partial time derivative $${{\partial_t}}$$ . The existence of the unique solution to the initial-boundary value problem corresponding to the generalized model is established in the space of distributions. We also obtain explicit form of the solution and compare it numerically with some limiting cases.

[1]  Teodor M. Atanackovic,et al.  An Expansion Formula for Fractional Derivatives and its Application , 2004 .

[2]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[3]  Francesco Mainardi,et al.  Some aspects of fractional diffusion equations of single and distributed order , 2007, Appl. Math. Comput..

[4]  E. C. Oliveira,et al.  On some fractional Green’s functions , 2009 .

[5]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[6]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[7]  Hans Engler,et al.  On the Speed of Spread for Fractional Reaction-Diffusion Equations , 2009, 0908.0024.

[8]  Karl Heinz Hoffmann,et al.  Fractional Diffusion, Irreversibility and Entropy , 2003 .

[9]  J. Klafter,et al.  The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics , 2004 .

[10]  Karl Heinz Hoffmann,et al.  Fractional Diffusion and Entropy Production , 1998 .

[11]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[12]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. II. Applications of Laplace and Fourier transformations , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[13]  Vasilii S Vladimirov Equations of mathematical physics , 1971 .

[14]  Enzo Orsingher,et al.  THE SPACE-FRACTIONAL TELEGRAPH EQUATION AND THE RELATED FRACTIONAL TELEGRAPH PROCESS , 2003 .

[15]  A. Hanyga,et al.  Multidimensional solutions of space–fractional diffusion equations , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[17]  Karl Heinz Hoffmann,et al.  The superdiffusion entropy production paradox in the space-fractional case for extended entropies , 2010 .

[18]  Linear Fractionally Damped Oscillator , 2009, 0908.1683.

[19]  Miroslav Šilhavý,et al.  The Mechanics and Thermodynamics of Continuous Media , 2002 .

[20]  Teodor M. Atanackovic,et al.  Time distributed-order diffusion-wave equation. I. Volterra-type equation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  T. Atanacković,et al.  Generalized wave equation in nonlocal elasticity , 2009 .

[22]  H. Qi,et al.  Solutions of the space-time fractional Cattaneo diffusion equation , 2011 .

[23]  Stevan Pilipović,et al.  A diffusion wave equation with two fractional derivatives of different order , 2007 .

[24]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[25]  T. Ruggeri,et al.  Continuum approach to phonon gas and shape changes of second sound via shock waves theory , 1994 .

[26]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[27]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .

[28]  Y. Chen,et al.  Variable-order fractional differential operators in anomalous diffusion modeling , 2009 .

[29]  Ljubica Oparnica,et al.  Waves in fractional Zener type viscoelastic media , 2010, 1101.2966.

[30]  Teodor M. Atanackovic,et al.  Semilinear ordinary differential equation coupled with distributed order fractional differential equation , 2008, 0811.2871.

[31]  Karl Heinz Hoffmann,et al.  Tsallis and Rényi entropies in fractional diffusion and entropy production , 2000 .

[32]  M. Chester Second Sound in Solids , 1963 .

[33]  E. C. Oliveira,et al.  Differentiation to fractional orders and the fractional telegraph equation , 2008 .