Selective recognition of sulfate ions by tripodal cyclic peptides functionalised with (thio)urea binding sites.

A tripodal urea and tripodal thiourea with the same cyclic peptide core have been synthesised and their anion binding ability investigated. In CDCl(3), the tripodal urea self-associates whereas the thiourea does not. Neither compound shows self-association in the more polar 10% v/v DMSO-d(6)/CDCl(3). Both compounds bind strongly and selectively to sulfate ions in CDCl(3) and 10% v/v DMSO-d(6)/CDCl(3). This selectivity is attributed to a unique binding mode for sulfate, in which this tetrahedral anion forms nine hydrogen bonds to the receptors, with three of these coming from the amide protons of the cyclic peptide.

[1]  Francisco M. Muñiz,et al.  Sulfonamide carbazole receptors for anion recognition. , 2011, Organic & biomolecular chemistry.

[2]  G. Das,et al.  Encapsulation of trivalent phosphate anion within a rigidified π-stacked dimeric capsular assembly of tripodal receptor. , 2011, Dalton transactions.

[3]  T. Gunnlaugsson,et al.  Selective and tuneable recognition of anions using C(3v)-symmetrical tripodal urea-amide receptor platforms. , 2011, Chemical communications.

[4]  Philip A. Gale,et al.  Structure–Activity Relationships in Tripodal Transmembrane Anion Transporters: The Effect of Fluorination , 2011, Journal of the American Chemical Society.

[5]  Biao Wu,et al.  Redox-driven sulfate ion transfer between two tripodal tris(urea) receptors. , 2011, Organic & biomolecular chemistry.

[6]  J. Rebek,et al.  Bent alkanes in a new thiourea-containing capsule. , 2011, Journal of the American Chemical Society.

[7]  Lorenzo Mosca,et al.  Urea-, squaramide-, and sulfonamide-based anion receptors: a thermodynamic study. , 2011, Chemistry.

[8]  Biao Wu,et al.  Highly efficient extraction of sulfate ions with a tripodal hexaurea receptor. , 2011, Angewandte Chemie.

[9]  K. Jolliffe,et al.  Hybrid cyclic peptide-thiourea cryptands for anion recognition. , 2011, Chemical communications.

[10]  F. Wang,et al.  Anion complexation and sensing using modified urea and thiourea-based receptors. , 2010, Chemical Society reviews.

[11]  Luigi Fabbrizzi,et al.  Anion recognition by hydrogen bonding: urea-based receptors. , 2010, Chemical Society reviews.

[12]  B. Hay De novo structure-based design of anion receptors. , 2010, Chemical Society reviews.

[13]  S. A. Ross,et al.  An NMR investigation of the existence ofhalide and carboxylate co-solute effects onthe rotational barrier about the C—N bonds inurea and thiourea , 2010 .

[14]  P. Ghosh,et al.  Unusual recognition of (n-Bu4N)2SO4 by a cyanuric acid based host via contact ion-pair interactions. , 2010, Chemical communications.

[15]  Philip A. Gale,et al.  Tripodal transmembrane transporters for bicarbonate. , 2010, Chemical communications.

[16]  Philip A. Gale,et al.  Acyclic indole and carbazole-based sulfate receptors , 2010 .

[17]  I. Robina,et al.  Synthesis of a C3‐Symmetric Furyl‐Cyclopeptide Platform with Anion Recognition Properties , 2010 .

[18]  Philip A. Gale,et al.  Fluorescent carbazolylurea- and carbazolylthiourea-based anion receptors and sensors , 2010 .

[19]  B. Moyer,et al.  Selectivity principles in anion separation by crystallization of hydrogen-bonding capsules. , 2010, Journal of the American Chemical Society.

[20]  Philip A. Gale,et al.  Anion-anion proton transfer in hydrogen bonded complexes. , 2010, Chemistry, an Asian journal.

[21]  Miguel Vázquez López,et al.  Sulfonamide-imines as selective fluorescent chemosensors for the fluoride anion. , 2010, Organic & biomolecular chemistry.

[22]  Paulo J. Costa,et al.  Sulfate anion templated synthesis of a triply interlocked capsule. , 2009, Chemical communications.

[23]  E. Suresh,et al.  Anion complexation of a pentafluorophenyl-substituted tripodal urea receptor in solution and the solid state: selectivity toward phosphate. , 2009, Dalton transactions.

[24]  S. Kubik Amino acid containing anion receptors. , 2009, Chemical Society reviews.

[25]  G. Haberhauer,et al.  Anion Recognition by Neutral Macrocyclic Azole Amides , 2009 .

[26]  Philip A. Gale Synthetic indole, carbazole, biindole and indolocarbazole-based receptors: applications in anion complexation and sensing. , 2008, Chemical communications.

[27]  M. Luhmer,et al.  Calix[6]tris(thio)ureas: heteroditopic receptors for the cooperative binding of organic ion pairs. , 2008, The Journal of organic chemistry.

[28]  Biao Wu,et al.  Sulfate ion encapsulation in caged supramolecular structures assembled by second-sphere coordination. , 2008, Chemical communications.

[29]  B. Moyer,et al.  Sulfate recognition by persistent crystalline capsules with rigidified hydrogen-bonding cavities. , 2008, Angewandte Chemie.

[30]  Philip A. Gale,et al.  Anion binding vs. sulfonamide deprotonation in functionalised ureas. , 2008, Chemical communications.

[31]  Orion B. Berryman,et al.  Water and hydrogen halides serve the same structural role in a series of 2+2 hydrogen-bonded dimers based on 2,6-bis(2-anilinoethynyl)pyridine sulfonamide receptors. , 2008, Angewandte Chemie.

[32]  S. Grimme,et al.  Configurationally stable propeller-like triarylphosphine and triarylphosphine oxide. , 2007, Chemical communications.

[33]  Ichiro Hisaki,et al.  Synthesis and Anion‐Selective Complexation of Homobenzylic Tripodal Thiourea Derivatives , 2007 .

[34]  R. Begum,et al.  Amide-based ligands for anion coordination. , 2006, Angewandte Chemie.

[35]  B. Hay,et al.  Conformational preferences and internal rotation in alkyl- and phenyl-substituted thiourea derivatives. , 2006, The journal of physical chemistry. A.

[36]  J. Steed,et al.  A conformationally flexible, urea-based tripodal anion receptor: solid-state, solution, and theoretical studies. , 2006, The Journal of organic chemistry.

[37]  B. Moyer,et al.  A coordinatively saturated sulfate encapsulated in a metal-organic framework functionalized with urea hydrogen-bonding groups. , 2005, Chemical communications.

[38]  V. John,et al.  Urea and thiourea derivatives as low molecular-mass organogelators. , 2005, Chemistry.

[39]  D. Fairlie,et al.  Structural mimicry of two cytochrome b(562) interhelical loops using macrocycles constrained by oxazoles and thiazoles. , 2005, Journal of the American Chemical Society.

[40]  Bruce A Moyer,et al.  Structural design criteria for anion hosts: strategies for achieving anion shape recognition through the complementary placement of urea donor groups. , 2005, Journal of the American Chemical Society.

[41]  B. Hay,et al.  Conformational analysis and rotational barriers of alkyl- and phenyl-substituted urea derivatives. , 2005, The journal of physical chemistry. A.

[42]  K. Jolliffe Backbone-modified Cyclic Peptides: New Scaffolds for Supramolecular Chemistry , 2005 .

[43]  K. Ahn,et al.  Benzene-based tripodal isothiouronium compounds as sulfate ion receptors , 2004 .

[44]  S. J. Loeb,et al.  Amide based receptors for anions , 2003 .

[45]  D. Fairlie,et al.  Designing supramolecular structures from models of cyclic peptide scaffolds with heterocyclic constraints. , 2003, Journal of molecular graphics & modelling.

[46]  J. Steed,et al.  Dimeric self-assembling capsules derived from the highly flexible tribenzylamine skeleton. , 2002, The Journal of organic chemistry.

[47]  K. Ahn,et al.  Novel C3V-symmetric tripodal scaffold, triethyl cis,cis,cis-2,5,8- tribenzyltrindane-2,5,8-tricarboxylate, for the construction of artificial receptors. , 2002, Organic letters.

[48]  S. Sasaki,et al.  Design and synthesis of preorganized tripodal fluororeceptors based on hydrogen bonding of thiourea groups for optical phosphate ion sensing , 2001 .

[49]  D. Mink,et al.  Natural products analogs as scaffolds for supramolecular and combinatorial chemistry , 1998 .

[50]  John D. Roberts,et al.  An NMR Investigation of the Effect of Hydrogen Bonding on the Rates of Rotation about the C−N Bonds in Urea and Thiourea , 1996 .

[51]  J. Rebek,et al.  Synthesis and assembly of self-complementary calix[4]arenes. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  David N. Reinhoudt,et al.  Complexation of Halide Anions and Tricarboxylate Anions by Neutral Urea-Derivatized p-tert-Butylcalix[6]arenes , 1995 .

[53]  F. G. Bordwell,et al.  Equilibrium Acidities in Dimethyl Sulfoxide Solution , 1988 .

[54]  A. Pardi,et al.  Hydrogen bond length and proton NMR chemical shifts in proteins , 1983 .