Joint Retrieval of Aerosol Optical Depth and Surface Reflectance Over Land Using Geostationary Satellite Data

The advanced Himawari imager (AHI) aboard the Himawari-8 geostationary satellite provides high-frequency observations with broad coverage, multiple spectral channels, and high spatial resolution. In this paper, AHI data were used to develop an algorithm for joint retrieval of aerosol optical depth (AOD) over land and land surface bidirectional reflectance. Instead of performing surface reflectance estimation before calculating AOD, the AOD and surface bidirectional reflectance were retrieved simultaneously using an optimal estimation method. The algorithm uses an atmospheric radiative transfer model coupled with a surface bidirectional reflectance factor (BRF) model. Based on the assumption that the surface bidirectional reflective properties are invariant during a short time period (i.e., a day), multiple temporal AHI observations were combined to calculate the AOD and surface BRF. The algorithm was tested over East Asia for year 2016, and the AOD retrieval results were validated against the aerosol robotic network (AERONET) sites observation and compared with the Moderate Resolution Imaging Spectroradiometer Collection 6.0 AOD product. The validation of the retrieved AOD with AERONET measurements using 14 713 colocation points in 2016 over East Asia shows a high correlation coefficient: $R = 0.88$ , root-mean-square error = 0.17, and approximately 69.9% AOD retrieval results within the expected error of $\pm 0.2\cdot {\mathrm {AOD}}_{\mathrm {AERONET}}\pm 0.05$ . A brief comparison between our retrieval and AOD product provided by Japan Meteorological Agency is also presented. The comparison and validation demonstrates that the algorithm has the ability to estimate AOD with considerable accuracy over land.

[1]  C. Varotsos Airborne measurements of aerosol, ozone, and solar ultraviolet irradiance in the troposphere , 2005 .

[2]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[3]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[4]  Gerrit de Leeuw,et al.  Retrieval of aerosol optical depth over land using two‐angle view satellite radiometry during TARFOX , 1998 .

[5]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[6]  A. Kokhanovsky,et al.  Atmospheric Aerosol Monitoring from Satellite Observations: A History of Three Decades , 2009 .

[7]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[9]  Linlu Mei,et al.  Retrieval of aerosol optical properties using MERIS observations: Algorithm and some first results. , 2017, Remote sensing of environment.

[10]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[11]  J. Hansen,et al.  Radiative forcing and climate response , 1997 .

[12]  Reto Knutti,et al.  Climate Forcing by Aerosols--a Hazy Picture , 2003, Science.

[13]  Christopher Justice,et al.  Towards a Generalized Approach for Correction of the BRDF Effect in MODIS Directional Reflectances , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  A. Strahler,et al.  On the derivation of kernels for kernel‐driven models of bidirectional reflectance , 1995 .

[15]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[16]  E. Vermote,et al.  Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer , 1997 .

[17]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[18]  S. Kondragunta,et al.  Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance , 2005 .

[19]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[21]  H. S. Lim,et al.  Retrieving aerosol optical depth using visible and mid‐IR channels from geostationary satellite MTSAT‐1R , 2008 .

[22]  Dong L. Wu,et al.  Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction , 2014 .

[23]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[24]  W. V. Hoyningen-Huene,et al.  Retrieval of aerosol optical thickness over land surfaces from top‐of‐atmosphere radiance , 2003 .

[25]  E. Vermote,et al.  Aerosol retrieval over land from AVHRR data-application for atmospheric correction , 1992, IEEE Trans. Geosci. Remote. Sens..

[26]  Eric F. Vermote,et al.  Correction of MODIS surface reflectance time series for BRDF effects , 2012 .

[27]  Alan H. Strahler,et al.  Decoupling path-scattering of light in a homogeneous layer and multiple bouncing at its non-Lambertian bottom , 1996 .

[28]  Peter R. J. North,et al.  Aerosol optical depth and land surface reflectance from multiangle AATSR measurements: global validation and intersensor comparisons , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Stefan Wunderle,et al.  Remote sensing of aerosol optical depth over central Europe from MSG-SEVIRI data and accuracy assessment with ground-based AERONET measurements , 2007 .

[30]  Didier Tanré,et al.  Estimation of Saharan aerosol optical thickness from blurring effects in thematic mapper data , 1988 .

[31]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[32]  John P. Burrows,et al.  Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS , 2010 .

[33]  Nadine Gobron,et al.  Using angular and spectral shape similarity constraints to improve MISR aerosol and surface retrievals over land , 2005 .

[34]  N. C. Strugnell,et al.  First operational BRDF, albedo nadir reflectance products from MODIS , 2002 .

[35]  Wenhan Qin,et al.  A fast, accurate algorithm to account for non‐Lambertian surface effects on TOA radiance , 2001 .

[36]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[37]  Costas A. Varotsos,et al.  An observational study of the atmospheric ultra-fine particle dynamics , 2012 .

[38]  Ralph A. Kahn,et al.  Global aerosol mixtures and their multiyear and seasonal characteristics , 2015 .

[39]  Richard Siddans,et al.  Use of MODIS-derived surface reflectance data in the ORAC-AATSR aerosol retrieval algorithm: Impact of differences between sensor spectral response functions , 2012 .

[40]  J. Ryu,et al.  Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager , 2010 .

[41]  Lorraine Remer,et al.  The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol , 1997, IEEE Trans. Geosci. Remote. Sens..

[42]  Alexei Lyapustin,et al.  Aerosol optical depth (AOD) retrieval using simultaneous GOES-East and GOES-West reflected radiances over the western United States , 2012 .

[43]  J. Roujean,et al.  A bidirectional reflectance model of the Earth's surface for the correction of remote sensing data , 1992 .

[44]  Didier Tanré,et al.  Retrieval of land surface parameters from airborne POLDER bidirectional reflectance distribution function during HAPEX‐Sahel , 1997 .

[45]  Peter R. J. North,et al.  Retrieval of land surface bidirectional reflectance and aerosol opacity from ATSR-2 multiangle imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[46]  Marion Schroedter-Homscheidt,et al.  Improvements of synergetic aerosol retrieval for ENVISAT , 2008 .

[47]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[48]  Yi Qin,et al.  Characterizing the Aerosol and Surface Reflectance Over Australia Using AATSR , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[49]  Jindi Wang,et al.  Estimation of surface albedo and directional reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) observations , 2012 .

[50]  Alan H. Strahler,et al.  Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing , 1992, IEEE Trans. Geosci. Remote. Sens..

[51]  R. J. Flowerdew,et al.  Retrieval of aerosol optical thickness over land using the ATSR‐2 Dual‐Look Satellite Radiometer , 1996 .

[52]  Alexei Lyapustin,et al.  A multi-angle aerosol optical depth retrieval algorithm for geostationary satellite data over the United States , 2011 .

[53]  Peter R. J. North,et al.  The inter-comparison of major satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected light , 2009 .

[54]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables , 2011 .

[55]  M. McCormick,et al.  Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements , 2005 .

[56]  Philip Watts,et al.  Joint retrieval of surface reflectance and aerosol optical depth from MSG/SEVIRI observations with an optimal estimation approach: 1. Theory , 2010 .

[57]  Michael J. Garay,et al.  An optimization approach for aerosol retrievals using simulated MISR radiances , 2012 .

[58]  Richard Siddans,et al.  Oxford-RAL Aerosol and Cloud (ORAC): aerosol retrievals from satellite radiometers , 2009 .

[59]  Oleg Dubovik,et al.  Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land , 2007 .