Response of Rat Prefrontal Pyramidal Neurons Dopamine Increases the Gain of the Input-Output

[1]  Xiao-Jing Wang,et al.  Erratum to: Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition , 2014, Journal of Computational Neuroscience.

[2]  N. Kato,et al.  Dopamine induces a slow afterdepolarization in lateral amygdala neurons. , 2007, Journal of neurophysiology.

[3]  David A Lewis,et al.  Dopamine D1 receptor activation regulates sodium channel‐dependent EPSP amplification in rat prefrontal cortex pyramidal neurons , 2007, The Journal of physiology.

[4]  Michele Giugliano,et al.  The Impact of Input Fluctuations on the Frequency–Current Relationships of Layer 5 Pyramidal Neurons in the Rat Medial Prefrontal Cortex , 2007, The Journal of Neuroscience.

[5]  J. Seamans,et al.  Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. , 2007, Journal of neurophysiology.

[6]  W. Senn,et al.  Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. , 2006, Journal of neurophysiology.

[7]  Sean J. Slee,et al.  Diversity of Gain Modulation by Noise in Neocortical Neurons: Regulation by the Slow Afterhyperpolarization Conductance , 2006, The Journal of Neuroscience.

[8]  Dany Arsenault,et al.  Gain modulation by serotonin in pyramidal neurones of the rat prefrontal cortex , 2005, The Journal of physiology.

[9]  Christopher C Lapish,et al.  Mesocortical Dopamine Neurons Operate in Distinct Temporal Domains Using Multimodal Signaling , 2005, The Journal of Neuroscience.

[10]  E. Rolls,et al.  Object perception in natural scenes: encoding by inferior temporal cortex simultaneously recorded neurons. , 2005, Journal of neurophysiology.

[11]  Kuei Y Tseng,et al.  Post-pubertal emergence of prefrontal cortical up states induced by D1-NMDA co-activation. , 2004, Cerebral cortex.

[12]  J. Seamans,et al.  The principal features and mechanisms of dopamine modulation in the prefrontal cortex , 2004, Progress in Neurobiology.

[13]  Kuei Y Tseng,et al.  Dopamine–Glutamate Interactions Controlling Prefrontal Cortical Pyramidal Cell Excitability Involve Multiple Signaling Mechanisms , 2004, The Journal of Neuroscience.

[14]  Walter Senn,et al.  Comparison between networks of conductance- and current-driven neurons: stationary spike rates and subthreshold depolarization , 2004, Neurocomputing.

[15]  Zhong-Wei Zhang,et al.  Maturation of layer V pyramidal neurons in the rat prefrontal cortex: intrinsic properties and synaptic function. , 2004, Journal of neurophysiology.

[16]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[17]  P. Goldman-Rakic,et al.  Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. , 2003, Journal of neurophysiology.

[18]  W. Senn,et al.  Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. , 2003, Journal of neurophysiology.

[19]  P. Goldman-Rakic,et al.  Dopamine Modulation of Perisomatic and Peridendritic Inhibition in Prefrontal Cortex , 2003, The Journal of Neuroscience.

[20]  P. Goldman-Rakic,et al.  Selective modulation of excitatory and inhibitory microcircuits by dopamine , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[22]  Yves Burnod,et al.  An integrative theory of the phasic and tonic modes of dopamine modulation in the prefrontal cortex , 2002, Neural Networks.

[23]  Daniel Durstewitz,et al.  The computational role of dopamine D1 receptors in working memory , 2002, Neural Networks.

[24]  P. Sah,et al.  Channels underlying neuronal calcium-activated potassium currents , 2002, Progress in Neurobiology.

[25]  Jonathan D. Cohen,et al.  Computational perspectives on dopamine function in prefrontal cortex , 2002, Current Opinion in Neurobiology.

[26]  T. Sejnowski,et al.  Book Review: Gain Modulation in the Central Nervous System: Where Behavior, Neurophysiology, and Computation Meet , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[27]  D. Jaffe,et al.  Multiple effects of dopamine on layer V pyramidal cell excitability in rat prefrontal cortex. , 2001, Journal of neurophysiology.

[28]  D. Durstewitz,et al.  Bidirectional Dopamine Modulation of GABAergic Inhibition in Prefrontal Cortical Pyramidal Neurons , 2001, The Journal of Neuroscience.

[29]  A. Grace,et al.  Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner , 2001, Neuroscience.

[30]  P. O’Donnell,et al.  D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. , 2001, Cerebral cortex.

[31]  P. Goldman-Rakic,et al.  Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Sejnowski,et al.  Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Lewis,et al.  Ventral tegmental area afferents to the prefrontal cortex maintain membrane potential 'up' states in pyramidal neurons via D(1) dopamine receptors. , 2000, Cerebral cortex.

[34]  D. Henze,et al.  Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. , 2000, Journal of neurophysiology.

[35]  T. Sejnowski,et al.  Neurocomputational models of working memory , 2000, Nature Neuroscience.

[36]  P. Goldman-Rakic,et al.  Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. , 2000, Cerebral cortex.

[37]  N. Gorelova,et al.  Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. , 2000, Journal of neurophysiology.

[38]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[39]  T. Sejnowski,et al.  Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. , 2000, Journal of neurophysiology.

[40]  P. Goldman-Rakic,et al.  D1 receptors in prefrontal cells and circuits , 2000, Brain Research Reviews.

[41]  N. Brunel Persistent activity and the single-cell frequency–current curve in a cortical network model , 2000, Network.

[42]  X. Wang,et al.  Synaptic Basis of Cortical Persistent Activity: the Importance of NMDA Receptors to Working Memory , 1999, The Journal of Neuroscience.

[43]  Jonathan D. Cohen,et al.  Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function , 1999, Biological Psychiatry.

[44]  Maurizio Mattia,et al.  Collective Behavior of Networks with Linear (VLSI) Integrate-and-Fire Neurons , 1999, Neural Computation.

[45]  A. Destexhe,et al.  Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. , 1999, Journal of neurophysiology.

[46]  D. Jaffe,et al.  Dopamine Decreases the Excitability of Layer V Pyramidal Cells in the Rat Prefrontal Cortex , 1998, The Journal of Neuroscience.

[47]  T. Sejnowski,et al.  Effects of cholinergic modulation on responses of neocortical neurons to fluctuating input. , 1997, Cerebral cortex.

[48]  B. Bunney,et al.  Characterization of dopamine‐induced depolarization of prefrontal cortical neurons , 1997, Synapse.

[49]  D. Amit,et al.  Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. , 1997, Cerebral cortex.

[50]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[51]  CR Yang,et al.  Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  J. Seamans,et al.  Electrophysiological and morphological properties of layers V-VI principal pyramidal cells in rat prefrontal cortex in vitro , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  J F Storm,et al.  Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. , 1995, Journal of neurophysiology.

[54]  E. Geijo-Barrientos,et al.  The Effects of Dopamine on the Subthreshold Electrophysiological Responses of Rat Prefrontal Cortex Neurons In Vitro , 1995, The European journal of neuroscience.

[55]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[56]  D A Bayliss,et al.  Multiple potassium conductances and their role in action potential repolarization and repetitive firing behavior of neonatal rat hypoglossal motoneurons. , 1993, Journal of neurophysiology.

[57]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[58]  J D Cohen,et al.  A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. , 1990, Science.

[59]  R. Nicoll,et al.  Dopamine decreases the calcium-activated afterhyperpolarization in hippocampal CA1 pyramidal cells , 1986, Brain Research.