The Intestinal Crypt, A Prototype Stem Cell Compartment

[1]  J. Paneth Ueber die secernirenden Zellen des Dünndarm-Epithels , 1887 .

[2]  G. Bizzozero Ueber die schlauchförmigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut Dritte Mittheilung , 1889 .

[3]  G. Bizzozero Ueber die schlauchförmigen Drüsen des Magendarmkanals und die Beziehungen ihres Epithels zu dem Oberflächenepithel der Schleimhaut , 1892 .

[4]  N. Friedman CELLULAR DYNAMICS IN THE INTESTINAL MUCOSA: THE EFFECT OF IRRADIATION ON EPITHELIAL MATURATION AND MIGRATION , 1945, The Journal of experimental medicine.

[5]  Localization of motor cells in the thoracic spinal cord of the rhesus monkey. , 1947 .

[6]  Rate of renewal of the cells of the intestinal epithelium in the rat. , 1947, The Anatomical record.

[7]  C. P. Leblond,et al.  The constant renewal of the intestinal epithelium in the albino rat , 1948, The Anatomical record.

[8]  C. P. Leblond,et al.  Sites of nucleic acid synthesis in the mouse visualized by radioautography after administration of C14-labelled adenine and thymidine. , 1958, Experimental cell research.

[9]  C. P. Leblond,et al.  Renewal of chief cells and goblet cells in the small intestine as shown by radioautography after injection of thymidine‐H3 into mice , 1958, The Anatomical record.

[10]  H QUASTLER,et al.  Cell population kinetics in the intestinal epithelium of the mouse. , 1959, Experimental cell research.

[11]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. , 1974, The American journal of anatomy.

[12]  H Cheng,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. IV. Paneth cells. , 1974, The American journal of anatomy.

[13]  C. P. Leblond,et al.  Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. , 1974, The American journal of anatomy.

[14]  John Cairns,et al.  Mutation selection and the natural history of cancer , 1975, Nature.

[15]  C. Potten,et al.  Extreme sensitivity of some intestinal crypt cells to X and γ irradiation , 1977, Nature.

[16]  C. Potten Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. , 1977, Nature.

[17]  J. Cairns,et al.  The segregation of DNA in epithelial stem cells , 1978, Cell.

[18]  H Cheng,et al.  The stem-cell zone of the small intestinal epithelium. II. Evidence from paneth cells in the newborn mouse. , 1981, The American journal of anatomy.

[19]  H Cheng,et al.  The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. , 1981, The American journal of anatomy.

[20]  M. Bjerknes,et al.  The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. , 1981, The American journal of anatomy.

[21]  B. A. J. Ponder,et al.  A clonal marker induced by mutation in mouse intestinal epithelium , 1988, Nature.

[22]  Margaret Robertson,et al.  Identification and characterization of the familial adenomatous polyposis coli gene , 1991, Cell.

[23]  S. Altschul,et al.  Identification of FAP locus genes from chromosome 5q21. , 1991, Science.

[24]  AC Tose Cell , 1993, Cell.

[25]  K. Kinzler,et al.  Association of the APC tumor suppressor protein with catenins. , 1993, Science.

[26]  F. Masiarz,et al.  Association of the APC gene product with beta-catenin. , 1993, Science.

[27]  R. Playford,et al.  Luminal epidermal growth factor is trophic to the small intestine of parenterally fed rats. , 1995, Clinical science.

[28]  K. Kinzler,et al.  Constitutive Transcriptional Activation by a β-Catenin-Tcf Complex in APC−/− Colon Carcinoma , 1997, Science.

[29]  J. Gordon,et al.  Examining the Role of Paneth Cells in the Small Intestine by Lineage Ablation in Transgenic Mice* , 1997, The Journal of Biological Chemistry.

[30]  Hans Clevers,et al.  Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4 , 1998, Nature Genetics.

[31]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[32]  A. Sparks,et al.  Identification of c-MYC as a target of the APC pathway. , 1998, Science.

[33]  T. Ziegler,et al.  Gut-trophic effects of keratinocyte growth factor in rat small intestine and colon during enteral refeeding. , 1998, JPEN. Journal of parenteral and enteral nutrition.

[34]  F. McCormick,et al.  Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. , 1999, Nature.

[35]  H Cheng,et al.  Clonal analysis of mouse intestinal epithelial progenitors. , 1999, Gastroenterology.

[36]  David I. Smith,et al.  Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating β-catenin/TCF signalling , 2000, Nature Genetics.

[37]  David I. Smith,et al.  Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling (vol 26, pg 146, 2000) , 2000 .

[38]  Ryoichiro Kageyama,et al.  Control of endodermal endocrine development by Hes-1 , 2000, Nature Genetics.

[39]  Victor E. Velculescu,et al.  Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis , 2001, Nature Genetics.

[40]  H. Zoghbi,et al.  Requirement of Math1 for Secretory Cell Lineage Commitment in the Mouse Intestine , 2001, Science.

[41]  W F Bodmer,et al.  Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. , 2001, American journal of human genetics.

[42]  Hans Clevers,et al.  The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. , 2002, Cell.

[43]  Tony Pawson,et al.  β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB/EphrinB , 2002, Cell.

[44]  M. Bienz Faculty Opinions recommendation of Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. , 2002 .

[45]  Christopher S Potten,et al.  Intestinal stem cells protect their genome by selective segregation of template DNA strands. , 2002, Journal of cell science.

[46]  Isabelle Duluc,et al.  Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium , 2002, The EMBO journal.

[47]  Christopher S Potten,et al.  The intestinal epithelial stem cell. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Hans Clevers,et al.  Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. , 2003, Genes & development.

[49]  Hideyuki Okano,et al.  Identification of a putative intestinal stem cell and early lineage marker; musashi-1. , 2003, Differentiation; research in biological diversity.

[50]  Ossama Tawfik,et al.  BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling , 2004, Nature Genetics.

[51]  Francois Pognan,et al.  Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. , 2004, Toxicological sciences : an official journal of the Society of Toxicology.

[52]  Hans Clevers,et al.  De Novo Crypt Formation and Juvenile Polyposis on BMP Inhibition in Mouse Intestine , 2004, Science.

[53]  S. Artavanis-Tsakonas,et al.  Notch signals control the fate of immature progenitor cells in the intestine , 2005, Nature.

[54]  L. Hooper Faculty Opinions recommendation of Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. , 2005 .

[55]  Takeshi Oshima,et al.  Mitogenic Influence of Human R-Spondin1 on the Intestinal Epithelium , 2005, Science.

[56]  H. Zoghbi,et al.  Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. , 2005, Genes & development.

[57]  H. Clevers,et al.  Wnt signalling induces maturation of Paneth cells in intestinal crypts , 2005, Nature Cell Biology.

[58]  Hans Clevers,et al.  Notch/γ-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells , 2005, Nature.

[59]  H. Clevers,et al.  Rapid Loss of Intestinal Crypts upon Conditional Deletion of the Wnt/Tcf-4 Target Gene c-Myc , 2006, Molecular and Cellular Biology.

[60]  Jonas Frisén,et al.  EphB Receptors Coordinate Migration and Proliferation in the Intestinal Stem Cell Niche , 2006, Cell.

[61]  Suet Yi Leung,et al.  Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors , 2007, Proceedings of the National Academy of Sciences.

[62]  Julie A. Wilkins,et al.  Myc deletion rescues Apc deficiency in the small intestine , 2007, Nature.

[63]  H. Zoghbi,et al.  Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. , 2007, Gastroenterology.

[64]  Philippe Blache,et al.  Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium , 2007, The Journal of cell biology.

[65]  Hans Clevers,et al.  SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. , 2006, Gastroenterology.

[66]  H. Clevers,et al.  Identification of stem cells in small intestine and colon by marker gene Lgr5 , 2007, Nature.

[67]  Joerg Huelsken,et al.  Wnt/β-Catenin Is Essential for Intestinal Homeostasis and Maintenance of Intestinal Stem Cells , 2007, Molecular and Cellular Biology.

[68]  Joerg Huelsken,et al.  Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. , 2007, Molecular and cellular biology.

[69]  H. Clevers,et al.  The Intestinal Wnt/TCF Signature. , 2007, Gastroenterology.

[70]  L. Samuelson,et al.  Intestinal Neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. , 2007, Developmental biology.

[71]  P. Laurent-Puig,et al.  A genetic study of the role of the Wnt/beta-catenin signalling in Paneth cell differentiation. , 2008, Developmental biology.

[72]  M. Capecchi,et al.  Bmi1 is expressed in vivo in intestinal stem cells , 2008, Nature Genetics.

[73]  Hans Clevers,et al.  Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2 , 2008, EMBO reports.

[74]  A. Wagers,et al.  Generation of mTert-GFP mice as a model to identify and study tissue progenitor cells , 2008, Proceedings of the National Academy of Sciences.

[75]  De Fabrica et Actione villorum intestinorum tenuium Hominis , 2008, Journal of Physiology and Biochemistry.

[76]  T. Sturgill,et al.  Fibroblast growth factor receptor-3 regulates Paneth cell lineage allocation and accrual of epithelial stem cells during murine intestinal development. , 2009, American journal of physiology. Gastrointestinal and liver physiology.

[77]  Hans Clevers,et al.  The ets-domain transcription factor Spdef promotes maturation of goblet and paneth cells in the intestinal epithelium. , 2009, Gastroenterology.

[78]  H. Clevers,et al.  Stem cells, self-renewal, and differentiation in the intestinal epithelium. , 2009, Annual review of physiology.

[79]  R. Richardson,et al.  Prominin1 marks intestinal stem cells that are susceptible to neoplastic transformation , 2008, Nature.

[80]  Hans Clevers,et al.  Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate , 2009, Cell.

[81]  H. Clevers,et al.  Single Lgr5 stem cells build crypt–villus structures in vitro without a mesenchymal niche , 2009, Nature.

[82]  H. Clevers,et al.  Prominin-1/CD133 marks stem cells and early progenitors in mouse small intestine. , 2009, Gastroenterology.

[83]  Hans Clevers,et al.  OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. , 2009, Gastroenterology.

[84]  H. Kiyono,et al.  RANKL Is Necessary and Sufficient to Initiate Development of Antigen-Sampling M Cells in the Intestinal Epithelium1 , 2009, The Journal of Immunology.

[85]  Allon M Klein,et al.  Intestinal Stem Cell Replacement Follows a Pattern of Neutral Drift , 2010, Science.

[86]  L. Samuelson,et al.  Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. , 2010, Developmental biology.

[87]  Bassem A. Hassan,et al.  Intestinal stem cells lacking the Math1 tumour suppressor are refractory to Notch inhibitors , 2010, Nature communications.

[88]  Klaus H. Kaestner,et al.  Gut endocrine cell development , 2010, Molecular and Cellular Endocrinology.

[89]  J. Whitsett,et al.  SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. , 2010, Experimental cell research.

[90]  Hans Clevers,et al.  Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells , 2010, Cell.

[91]  Camilla A. Richmond,et al.  Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells , 2010, Proceedings of the National Academy of Sciences.

[92]  Hans Clevers,et al.  Coexistence of Quiescent and Active Adult Stem Cells in Mammals , 2010, Science.

[93]  Hans Clevers,et al.  Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium , 2011, The Journal of cell biology.

[94]  O. Klein,et al.  A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable , 2011, Nature.

[95]  J. Epstein,et al.  Interconversion Between Intestinal Stem Cell Populations in Distinct Niches , 2011, Science.

[96]  M. Capecchi,et al.  The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations , 2011, Proceedings of the National Academy of Sciences.

[97]  B. Spencer‐Dene,et al.  Delta1 Expression, Cell Cycle Exit, and Commitment to a Specific Secretory Fate Coincide within a Few Hours in the Mouse Intestinal Stem Cell System , 2011, PloS one.

[98]  T. Van Loy,et al.  Lgr4 is required for Paneth cell differentiation and maintenance of intestinal stem cells ex vivo , 2011, EMBO reports.

[99]  H. Clevers,et al.  Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes , 2011, The EMBO journal.

[100]  油井 史郎 Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5⁺ stem cell , 2011 .

[101]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[102]  C. Cruciat,et al.  LGR4 and LGR5 are R‐spondin receptors mediating Wnt/β‐catenin and Wnt/PCP signalling , 2011, EMBO reports.

[103]  N. Shroyer,et al.  Intestinal development and differentiation. , 2011, Experimental cell research.

[104]  Hans Clevers,et al.  Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts , 2011, Nature.

[105]  Hans Clevers,et al.  Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling , 2011, Nature.

[106]  Q. Lin,et al.  R-spondins function as ligands of the orphan receptors LGR4 and LGR5 to regulate Wnt/β-catenin signaling , 2011, Proceedings of the National Academy of Sciences.

[107]  D. Joubert,et al.  Intestinal epithelial stem cells do not protect their genome by asymmetric chromosome segregation , 2011, Nature communications.

[108]  K. Kaestner,et al.  Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. , 2011, Gastroenterology.

[109]  Hans Clevers,et al.  Lrig1 controls intestinal stem cell homeostasis by negative regulation of ErbB signalling , 2012, Nature Cell Biology.

[110]  W. de Lau,et al.  Peyer's Patch M Cells Derived from Lgr5+ Stem Cells Require SpiB and Are Induced by RankL in Cultured “Miniguts” , 2012, Molecular and Cellular Biology.

[111]  Ryoichiro Kageyama,et al.  The role of Hes genes in intestinal development, homeostasis and tumor formation , 2012, Development.

[112]  R. Shivdasani,et al.  Intact function of Lgr5 receptor-expressing intestinal stem cells in the absence of Paneth cells , 2012, Proceedings of the National Academy of Sciences.

[113]  Bruce J. Aronow,et al.  The Pan-ErbB Negative Regulator Lrig1 Is an Intestinal Stem Cell Marker that Functions as a Tumor Suppressor , 2012, Cell.

[114]  Hans Clevers,et al.  Wnt/β-Catenin Signaling and Disease , 2012, Cell.

[115]  S. Itzkovitz,et al.  A Critical Role for the Wnt Effector Tcf4 in Adult Intestinal Homeostatic Self-Renewal , 2012, Molecular and Cellular Biology.

[116]  Franck Letourneur,et al.  Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1) , 2012, Proceedings of the National Academy of Sciences.

[117]  Melanie A. Huntley,et al.  Recurrent R-spondin fusions in colon cancer , 2012, Nature.

[118]  Alexander van Oudenaarden,et al.  The Lgr5 Intestinal Stem Cell Signature: Robust Expression of Proposed Quiescent ' Þ 4' Cell Markers , 2022 .

[119]  Alexander van Oudenaarden,et al.  Identifying the stem cell of the intestinal crypt: strategies and pitfalls. , 2012, Cell stem cell.

[120]  Samuel E. Senyo,et al.  Multi-isotope imaging mass spectrometry quantifies stem cell division and metabolism , 2012, Nature.

[121]  H. Clevers,et al.  Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors , 2012, Nature.

[122]  K. Venken,et al.  A Mouse Model of Acrodermatitis Enteropathica: Loss of Intestine Zinc Transporter ZIP4 (Slc39a4) Disrupts the Stem Cell Niche and Intestine Integrity , 2012, PLoS genetics.

[123]  T. Möröy,et al.  Origin of the brush cell lineage in the mouse intestinal epithelium. , 2012, Developmental biology.

[124]  Dudley Lamming,et al.  mTORC1 in the Paneth cell niche couples intestinal stem cell function to calorie intake , 2012, Nature.

[125]  R. Fodde,et al.  Paneth Cells in Intestinal Homeostasis and Tissue Injury , 2012, PloS one.

[126]  H. Ruffner,et al.  ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner , 2012, Nature.

[127]  A. Oudenaarden,et al.  Dll1+ secretory progenitor cells revert to stem cells upon crypt damage , 2012, Nature Cell Biology.

[128]  S. Ichinose,et al.  Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell , 2012, Nature Medicine.

[129]  H. Clevers,et al.  Redundant sources of Wnt regulate intestinal stem cells and promote formation of Paneth cells. , 2012, Gastroenterology.

[130]  Andreas Hierholzer,et al.  Wnt/β-Catenin Signaling Regulates Telomerase in Stem Cells and Cancer Cells , 2012, Science.

[131]  A. Oudenaarden,et al.  Single-molecule transcript counting of stem-cell markers in the mouse intestine , 2011, Nature Cell Biology.

[132]  Enrico Gratton,et al.  Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH , 2012, Scientific Reports.

[133]  T. Kaisho,et al.  The Ets Transcription Factor Spi-B Is Essential for the Differentiation of Intestinal Microfold (M) Cells , 2012, Nature Immunology.

[134]  H. Clevers,et al.  Paneth cells: maestros of the small intestinal crypts. , 2013, Annual review of physiology.

[135]  Matthias Stelzner,et al.  Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. , 2013, Gastroenterology.

[136]  H. Clevers,et al.  SnapShot: The Intestinal Crypt , 2013, Cell.

[137]  R. Russell,et al.  Intestinal label-retaining cells are secretory precursors expressing Lgr5 , 2013, Nature.