Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae)

Eumenis autonoe, a member of the lepidopteran family, Nymphalidae (superfamily Papilionoidea) is an endangered species and is found only on one isolated remote island Jeju in South Korea, on Halla Mt, at altitudes higher than 1,400 m. In this study, the complete mitochondrial genome (mitogenome) of E. autonoe was reported. The 15,489-bp long E. autonoe genome evidenced the typical gene content found in animal mitogenomes, and harbors the gene arrangement identical to all other sequenced lepidopteran insects, which differs from the most common type found in insects, due to the movement of tRNAMet to a position 5’-upstream of tRNAIle. As has been observed in many other lepidopteran insects, no typical ATN codon for the COI gene is available. Thus, we also designated the CGA (arginine) found at the beginning of the COI gene as a lepidopteran COI starter, in accordance with previous suggestions. The 678 bp long A + T-rich region, which is second longest in sequenced lepidopteran insects, harbored 10 identical 27 bp long tandem repeats plus one 13 - bp long incomplete final repeat. Such a repeat sequence has been, thus far, only rarely detected in lepidopteran mitogenomes. The E. autonoe A + T-rich region harbored a poly-T stretch of 19 bp and a conserved ATAGA motif located at the end of the region, which have been suggested to function as structural signals for minor-strand mtDNA replication. Phylogenetic reconstruction using the concatenated 13 amino acid and nucleotide sequences of the protein-coding genes (PCGs) consistently supported a close relationship between Bombycoidea and Geometroidea among six available lepidopteran superfamilies (Tortricoidea, Pyraloidea, Papilionoidea, Bombycoidea, Geometroidea and Noctuoidea). Among the true butterflies (Pieridae, Nymphalidae, Lycaenidae and Papilionidae), a closer relationship between Lycaenidae and Pieridae, excluding Nymphalidae was consistently concluded to exist, although this result deviated from the traditional view.

[1]  D. M. Hamm,et al.  The mitochondrial genome of the mosquito Anopheles gambiae: DNA sequence, genome organization, and comparisons with mitochondrial sequences of other insects , 1993, Insect molecular biology.

[2]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[3]  R. Robbins Comparative morphology of the butterfly foreleg coxa and trochanter (Lepidoptera) and its systematic implications , 1988 .

[4]  M. Whiting,et al.  The complete mitochondrial genome of the tobacco hornworm, Manduca sexta, (Insecta: Lepidoptera: Sphingidae), and an examination of mitochondrial gene variability within butterflies and moths. , 2008, Gene.

[5]  F. Dai,et al.  The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). , 2008, Acta biochimica et biophysica Sinica.

[6]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[7]  Niklas Wahlberg,et al.  Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers , 2005, Proceedings of the Royal Society B: Biological Sciences.

[8]  Nicole T. Perna,et al.  Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes , 2004, Journal of Molecular Evolution.

[9]  Douglas O. Clary,et al.  The mitochondrial DNA molecule ofDrosophila yakuba: Nucleotide sequence, gene organization, and genetic code , 2005, Journal of Molecular Evolution.

[10]  J. C. Regier,et al.  A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein‐coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny , 2008 .

[11]  F. Alt,et al.  Sequence and organization of the human T cell δ chain gene , 1988 .

[12]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[13]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[14]  A. Battisti,et al.  The complete mitochondrial genome of the bag-shelter moth Ochrogaster lunifer (Lepidoptera, Notodontidae) , 2008, BMC Genomics.

[15]  J. Huelsenbeck,et al.  MRBAYES : Bayesian inference of phylogeny , 2001 .

[16]  金 容植 原色韓國나비圖鑑 : 한국 나비의 分布・生態・變異 = Illustrated book of Korean butterflies in color , 2002 .

[17]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[18]  Kee-Young Kim,et al.  The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) , 2009, Molecular Biology Reports.

[19]  Miao Yu,et al.  Hong GY, Jiang ST, Yu M, Yang Y, Li F, Xue FS, Wei ZJ. The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). Acta Biochimica et Biophysica Sinica , 2009 .

[20]  J. Taanman,et al.  The mitochondrial genome: structure, transcription, translation and replication. , 1999, Biochimica et biophysica acta.

[21]  M. Friedrich,et al.  Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium castanaeum. , 2003, Molecular phylogenetics and evolution.

[22]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[23]  H. Kistler,et al.  The mitochondrial genome of , 1989 .

[24]  F. Frati,et al.  The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations , 2003, Insect molecular biology.

[25]  C. Fauron,et al.  Extensive diversity among Drosophila species with respect to nucleotide sequences within the adenine + thymine-rich region of mitochondrial DNA molecules. , 1980, Nucleic acids research.

[26]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[27]  S. Weller,et al.  In search of butterfly origins. , 1995, Molecular phylogenetics and evolution.

[28]  H. Sezutsu,et al.  Significant levels of sequence divergence and gene rearrangements have occurred between the mitochondrial genomes of the wild mulberry silkmoth, Bombyx mandarina, and its close relative, the domesticated silkmoth, Bombyx mori. , 2002, Molecular biology and evolution.

[29]  Joel Minet,et al.  Tentative reconstruction of the ditrysian phylogeny (Lepidoptera: Glossata) , 1991 .

[30]  Olivier Gascuel,et al.  PHYML Online: A Web Server for Fast Maximum Likelihood-Based Phylogenetic Inference , 2018 .

[31]  D. Wolstenholme,et al.  Animal mitochondrial DNA: structure and evolution. , 1992, International review of cytology.

[32]  S. Cha,et al.  The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). , 2007, Gene.

[33]  R. Hellmich,et al.  Partial mitochondrial genome sequences of Ostrinia nubilalis and Ostrinia furnicalis , 2005, International journal of biological sciences.

[34]  Anders Gorm Pedersen,et al.  RevTrans: multiple alignment of coding DNA from aligned amino acid sequences , 2003, Nucleic Acids Res..

[35]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[36]  D. Wolstenholme,et al.  Drosophila mitochondrial DNA: Conserved sequences in the A+T-rich region and supporting evidence for a secondary structure model of the small ribosomal RNA , 2005, Journal of Molecular Evolution.

[37]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[38]  T. A. Hall,et al.  BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT , 1999 .

[39]  B. Jin,et al.  Complete nucleotide sequence and organization of the mitogenome of the red-spotted apollo butterfly, Parnassius bremeri (Lepidoptera: Papilionidae) and comparison with other lepidopteran insects , 2009, Molecules and cells.

[40]  M. Whiting,et al.  Mitochondrial genomic comparisons of the subterranean termites from the Genus Reticulitermes (Insecta: Isoptera: Rhinotermitidae). , 2007, Genome.

[41]  Miao Yu,et al.  The complete nucleotide sequence of the mitochondrial genome of the cabbage butterfly, Artogeia melete (Lepidoptera: Pieridae). , 2009, Acta biochimica et biophysica Sinica.

[42]  E. Yun,et al.  The Complete Nucleotide Sequence and Gene Organization of the Mitochondrial Genome of the Korean Hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae) , 2005 .

[43]  N. P. Kristensen Remarks on the family-level phylogeny of butterflies (Insecta, Lepidoptera, Rhopalocera) , 2009 .

[44]  M. Hasegawa,et al.  Model of amino acid substitution in proteins encoded by mitochondrial DNA , 1996, Journal of Molecular Evolution.

[45]  H. Akaike A new look at the statistical model identification , 1974 .

[46]  Kwang Sik Shin,et al.  The mitochondrial genome of the smaller tea tortrix Adoxophyes honmai (Lepidoptera: Tortricidae). , 2006, Gene.

[47]  C. Rowell,et al.  The sequence, organization, and evolution of the Locusta migratoria mitochondrial genome , 1995, Journal of Molecular Evolution.

[48]  Zhao‐Jun Wei,et al.  The complete nucleotide sequence of the mitochondrial genome of Phthonandria atrilineata (Lepidoptera: Geometridae) , 2009, Molecular Biology Reports.

[49]  K. Tamura,et al.  Replication Origin of Mitochondrial DNA in Insects , 2005, Genetics.

[50]  J. Minet The Bombycoidea: phylogeny and higher classification (Lepidoptera: Glossata) , 1994 .

[51]  P. Arruda,et al.  The mitochondrial genome of the blowfly Chrysomya chloropyga (Diptera: Calliphoridae). , 2004, Gene.

[52]  Jeffrey L. Boore,et al.  Gene translocation links insects and crustaceans , 1998, Nature.

[53]  W. Brown,et al.  Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[54]  P. Ehrlich,et al.  The Phenetic Relationships of the Butterflies I. Adult Taxonomy and the Nonspecificity Hypothesis , 1967 .

[55]  Julio Montoya,et al.  tRNA punctuation model of RNA processing in human mitochondria , 1981, Nature.

[56]  C. Louis,et al.  The mitochondrial genome of the Mediterranean fruit fly, Ceratitis capitata , 2000, Insect molecular biology.

[57]  B. Schmid,et al.  Conservation of arthropod diversity in montane wetlands: effect of altitude, habitat quality and habitat fragmentation on butterflies and grasshoppers , 1999 .

[58]  Seong-Ryul Kim,et al.  Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. , 2008, Gene.

[59]  Miao Yu,et al.  Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae) , 2009, International journal of biological sciences.

[60]  David Posada,et al.  MtArt: a new model of amino acid replacement for Arthropoda. , 2006, Molecular biology and evolution.

[61]  Reinhold G. Herrmann,et al.  Complete nucleotide sequence of the , 2000 .