Codes with the same coset weight distributions as the Z4-linear Goethals codes
暂无分享,去创建一个
[1] Jean-Marie Goethals,et al. Nonlinear Codes Defined by Quadratic Forms over GF(2) , 1976, Inf. Control..
[2] Victor Zinoviev,et al. On Coset Weight Distributions of the 3-Error-Correcting BCH-Codes , 1997, SIAM J. Discret. Math..
[3] Claude Carlet,et al. Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..
[4] J. M. Goethals. Two dual families of nonlinear binary codes , 1974 .
[5] F. MacWilliams,et al. The Theory of Error-Correcting Codes , 1977 .
[6] Kalle Ranto. On algebraic decoding of the Z4-linear Goethals-like codes , 2000, IEEE Trans. Inf. Theory.
[7] Rudolf Lide,et al. Finite fields , 1983 .
[8] Philippe Delsarte,et al. Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..
[9] Tor Helleseth,et al. On coset weight distributions of the Z4-linear Goethals codes , 1998, IEEE Trans. Inf. Theory.
[10] Tor Helleseth,et al. Codes with the Same Weight Distributions as the Goethals Codes and the Delsarte-Goethals Codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.
[11] Elwyn R. Berlekamp,et al. On the Solution of Algebraic Equations over Finite Fields , 1967, Inf. Control..
[12] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[13] A. Robert Calderbank,et al. Large families of quaternary sequences with low correlation , 1996, IEEE Trans. Inf. Theory.
[14] H. Niederreiter,et al. Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .
[15] van Hca Henk Tilborg,et al. Uniformly packed codes , 1976 .
[16] Tor Helleseth,et al. The algebraic decoding of the Z/sub 4/-linear Goethals code , 1995 .
[17] Tor Helleseth,et al. On Z4-Linear Goethals Codes and Kloosterman Sums , 1999, Des. Codes Cryptogr..
[18] G. Lachaud,et al. The weights of the orthogonals of the extended quadratic binary Goppa codes , 1990, IEEE Trans. Inf. Theory.