Simultaneous Dangling Bond and Zincophilic Site Engineering of SiNx Protective Coatings toward Stable Zinc Anodes

[1]  W. Li,et al.  Multifunctional Analog Resistance Switching of Si3N4-Based Memristors through Migration of Ag+ Ions and Formation of Si-Dangling Bonds. , 2022, The journal of physical chemistry letters.

[2]  Zhoucheng Wang,et al.  Recent progress in advanced flexible zinc ion battery design , 2022, Applied Physics Reviews.

[3]  H. Fan,et al.  Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer , 2022, Advanced materials.

[4]  Zhengbing Qi,et al.  Surface and Interface Engineering of Zn Anodes in Aqueous Rechargeable Zn-Ion Batteries. , 2022, Small.

[5]  Jian Yang,et al.  Site-Selective Adsorption on ZnF2/Ag Coated Zn for Advanced Aqueous Zinc-Metal Batteries at Low Temperature. , 2022, Nano letters.

[6]  Wandi Wahyudi,et al.  Emerging Era of Electrolyte Solvation Structure and Interfacial Model in Batteries , 2022, ACS Energy Letters.

[7]  Cuixue Chen,et al.  Preferred Orientation of TiN Coatings Enables Stable Zinc Anodes , 2021, ACS Energy Letters.

[8]  Guozhao Fang,et al.  Ion migration and defect effect of electrode materials in multivalent-ion batteries , 2021, Progress in Materials Science.

[9]  D. Brett,et al.  Rechargeable aqueous Zn-based energy storage devices , 2021, Joule.

[10]  Chenyang Zhao,et al.  A Dynamic and Self‐Adapting Interface Coating for Stable Zn‐Metal Anodes , 2021, Advanced materials.

[11]  Yuhan Wu,et al.  Interfacial Manipulation via In Situ Grown ZnSe Cultivator toward Highly Reversible Zn Metal Anodes , 2021, Advanced materials.

[12]  Chenyang Zhao,et al.  Fast-growing Multifunctional ZnMoO4 Protection Layer Enable Dendrite-free and Hydrogen-suppressed Zn Anode , 2021, Energy Storage Materials.

[13]  Alexey Y. Koposov,et al.  Stoichiometry-Controlled Reversible Lithiation Capacity in Nanostructured Silicon Nitrides Enabled by in Situ Conversion Reaction , 2021, ACS nano.

[14]  Guozhao Fang,et al.  Anti‐Corrosive and Zn‐Ion‐Regulating Composite Interlayer Enabling Long‐Life Zn Metal Anodes , 2021, Advanced Functional Materials.

[15]  Huamin Zhang,et al.  Anode for Zinc-Based Batteries: Challenges, Strategies, and Prospects , 2021, ACS Energy Letters.

[16]  Chanhoon Kim,et al.  Insight into the Critical Role of Surface Hydrophilicity for Dendrite-Free Zinc Metal Anodes , 2021, ACS Energy Letters.

[17]  Shulai Lei,et al.  Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H2O)n 2+ Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc‐Ion Batteries , 2021, Advanced science.

[18]  Hongbing Lu,et al.  Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries , 2021, Nature Communications.

[19]  D. Brett,et al.  Insights on Flexible Zinc‐Ion Batteries from Lab Research to Commercialization , 2021, Advanced materials.

[20]  Jiang Zhou,et al.  Electrolyte Strategies toward Better Zinc-Ion Batteries , 2021 .

[21]  Yanglong Hou,et al.  Comprehensive Analyses of Aqueous Zn Metal Batteries: Characterization Methods, Simulations, and Theoretical Calculations , 2021, Advanced Energy Materials.

[22]  D. Brett,et al.  Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives , 2021, ACS Energy Letters.

[23]  Kwang‐Bum Kim,et al.  Transparent SiN thin-film anode for thin-film batteries by reactive sputtering at room temperature , 2020 .

[24]  J. Goodenough,et al.  Thermodynamic Understanding of Li-Dendrite Formation , 2020 .

[25]  Kang Xu,et al.  Realizing high zinc reversibility in rechargeable batteries , 2020 .

[26]  Xiaobo Ji,et al.  Revealing the role of crystal orientation of protective layers for stable zinc anode , 2020, Nature Communications.

[27]  Jiang Zhou,et al.  A Sieve‐Functional and Uniform‐Porous Kaolin Layer toward Stable Zinc Metal Anode , 2020, Advanced Functional Materials.

[28]  Thomas G. Allen,et al.  Passivating contacts for crystalline silicon solar cells , 2019, Nature Energy.

[29]  Bingbing Liu,et al.  EPR and Raman study of silicon layers obtained by gas detonation spraying , 2017 .

[30]  C. Ballif,et al.  Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth , 2017, Nature Energy.

[31]  I. Iatsunskyi,et al.  One and two-phonon Raman scattering from nanostructured silicon , 2015 .

[32]  A. Slaoui,et al.  Effect of the stoichiometry of Si-rich silicon nitride thin films on their photoluminescence and structural properties , 2015 .

[33]  F. Komarov,et al.  Raman study of light-emitting SiNx films grown on Si by low-pressure chemical vapor deposition , 2015 .

[34]  Zhigang Wu,et al.  Dangling Bond Defects: The Critical Roadblock to Efficient Photoconversion in Hybrid Quantum Dot Solar Cells , 2014 .

[35]  C. Freysoldt,et al.  The dangling-bond defect in amorphous silicon: Statistical random versus kinetically driven defect geometries , 2012 .

[36]  A. Franquet,et al.  Characterisation of the silicon nitride thin films deposited by plasma magnetron , 2008 .

[37]  H. Hasegawa,et al.  Formation of ultrathin SiNxSi interface control double layer on (001) and (111) GaAs surfaces for ex situ deposition of high-k dielectrics , 2019 .

[38]  J. Jiang,et al.  Structural characterization of cubic silicon nitride , 2000 .

[39]  A. Aberle,et al.  Carrier recombination at silicon–silicon nitride interfaces fabricated by plasma-enhanced chemical vapor deposition , 1999 .

[40]  W. L. Warren,et al.  Paramagnetic point defects in silicon nitride and silicon oxynitride thin films on silicon , 1996 .

[41]  Lide Zhang,et al.  Structure and Bond Properties of Compacted and Heat‐Treated Silicon Nitride Particles , 1993 .

[42]  J. Stathis,et al.  Electron spin resonance study of metal-nitride-silicon structures: Observation of Si dangling bonds with different configurations and trapping properties in silicon nitride , 1989 .

[43]  Tatsuo Shimizu,et al.  Defects in amorphous Si-N films prepared by RF sputtering , 1982 .

[44]  Ye Xu,et al.  Defect engineering activating (Boosting) zinc storage capacity of MoS2 , 2019, Energy Storage Materials.

[45]  Yi Cui,et al.  The path towards sustainable energy. , 2016, Nature materials.