Sharp Decay Estimates for an Anisotropic Linear Semigroup and Applications to the Surface Quasi-Geostrophic and Inviscid Boussinesq Systems

At the core of this article is an improved, sharp dispersive estimate for the anisotropic linear semigroup $e^{R_1t}$ arising in both the study of the dispersive surface quasi-geostrophic (SQG) equation and the inviscid Boussinesq system. We combine the decay estimate with a blow-up criterion to show how dispersion leads to long-time existence of solutions to the dispersive SQG equation, improving the results obtained using hyperbolic methods. In the setting of the inviscid Boussinesq system it turns out that linearization around a specific stationary solution leads to the same linear semigroup, so that we can make use of analogous techniques to obtain stability of the stationary solution for an increased time span.

[1]  A. G. Greenhill,et al.  Handbook of Mathematical Functions with Formulas, Graphs, , 1971 .

[2]  On the Well-Posedness of the Boussinesq Equation in the Triebel-Lizorkin-Lorentz Spaces , 2012 .

[3]  C. Miao,et al.  Global regularity for the supercritical dissipative quasi‐geostrophic equation with large dispersive forcing , 2011, 1108.5554.

[4]  C. Villani,et al.  On Landau damping , 2009, 0904.2760.

[5]  Zineb Hassainia,et al.  On the inviscid Boussinesq system with rough initial data , 2014, 1402.6499.

[6]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[7]  Leslie M. Smith,et al.  Local and nonlocal dispersive turbulence , 2007, 0709.2897.

[8]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[9]  Dongho Chae,et al.  Local existence and blow-up criterion for the Boussinesq equations , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[10]  T. Elgindi Asymptotic Stability for some Stratified Stationary Solutions of the Inviscid Incompressible Porous Medium Equation , 2014, 1411.6958.

[11]  Zhifei Zhang,et al.  Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces , 2010 .

[12]  Alexander Kiselev,et al.  Global regularity for the critical dispersive dissipative surface quasi-geostrophic equation , 2009, 0908.0925.

[13]  Andrew J. Majda,et al.  Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .

[14]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[15]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[16]  A. Babin,et al.  Global regularity of 3D rotating Navier-Stokes equations for resonant domains , 2000, Appl. Math. Lett..

[17]  P. G. Drazin,et al.  Hydrodynamic Stability: CENTRIFUGAL INSTABILITY , 2004 .

[18]  John K. Hunter,et al.  LONG TIME SOLUTIONS FOR A BURGERS-HILBERT EQUATION VIA A MODIFIED ENERGY METHOD , 2013, 1301.1947.

[19]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[20]  P. Drazin Introduction to Hydrodynamic Stability , 2002 .

[21]  N. Masmoudi,et al.  Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations , 2013, 1306.5028.

[22]  Dongho Chae,et al.  Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations , 1999, Nagoya Mathematical Journal.

[23]  C. Doering,et al.  Applied analysis of the Navier-Stokes equations: Index , 1995 .