A fuzzy portfolio selection method based on possibilistic mean and variance

This paper deals with the portfolio selection problem when the returns of assets obey LR-type possibility distributions and there exist the limits on holdings. A new possibilistic mean–variance model to portfolio selection is proposed based on the definitions of the possibilistic return and possibilistic risk, which can better integrate an uncertain decision environment with vagueness and ambiguity. This possibilistic mean–variance model can be regarded as extensions of conventional probabilistic mean–variance methodology and previous possibilistic approaches since it contains less parameter and has a more extensive application. A numerical example of a possibilistic fuzzy portfolio selection problem is given to illustrate our proposed effective means and approaches.

[1]  Wei-Guo Zhang,et al.  On Possibilistic Variance of Fuzzy Numbers , 2003, RSFDGrC.

[2]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[3]  Wei-Guo Zhang,et al.  Possibilistic mean-variance models and efficient frontiers for portfolio selection problem , 2007, Inf. Sci..

[4]  Hidetomo Ichihashi,et al.  Relationships between modality constrained programming problems and various fuzzy mathematical programming problems , 1992 .

[5]  Wei-Guo Zhang Possibilistic mean-standard deviation models to portfolio selection for bounded assets , 2007, Appl. Math. Comput..

[6]  J. Vörös,et al.  Portfolio analysis--an analytic derivation of the efficient portfolio frontier , 1986 .

[7]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection: Models and algorithms , 2006, Appl. Math. Comput..

[8]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[9]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..

[10]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[11]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection policy , 2005, Appl. Math. Comput..

[12]  Pandian Vasant,et al.  Fuzzy decision making of profit function in production planning using S-curve membership function , 2006, Comput. Ind. Eng..

[13]  Xiaoxia Huang,et al.  Two new models for portfolio selection with stochastic returns taking fuzzy information , 2007, Eur. J. Oper. Res..

[14]  Yue Qi,et al.  Randomly generating portfolio-selection covariance matrices with specified distributional characteristics , 2007, Eur. J. Oper. Res..

[15]  J. N. Sheen,et al.  Fuzzy Financial Profitability Analyses of Demand Side Management Alternatives , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[16]  Daniela Favaretto,et al.  Interfaces with Other Disciplines On the existence of solutions to the quadratic mixed-integer mean – variance portfolio selection problem , 2006 .

[17]  Hidetomo Ichihashi,et al.  Modality constrained programming problems: A unified approach to fuzzy mathematical programming problems in the setting of possibility theory , 1993, Inf. Sci..

[18]  Amelia Bilbao-Terol,et al.  Fuzzy compromise programming for portfolio selection , 2006, Appl. Math. Comput..

[19]  Peijun Guo,et al.  Portfolio selection based on upper and lower exponential possibility distributions , 1999, Eur. J. Oper. Res..

[20]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[21]  Peijun Guo,et al.  Group decision with inconsistent knowledge , 2002, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Valerio Lacagnina,et al.  A stochastic soft constraints fuzzy model for a portfolio selection problem , 2006, Fuzzy Sets Syst..

[23]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[24]  Jaroslava Hlouskova,et al.  The efficient frontier for bounded assets , 2000, Math. Methods Oper. Res..

[25]  Masahiro Inuiguchi,et al.  Portfolio selection under independent possibilistic information , 2000, Fuzzy Sets Syst..

[26]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[27]  Jong-Shi Pang,et al.  A New and Efficient Algorithm for a Class of Portfolio Selection Problems , 1980, Oper. Res..

[28]  D. Dubois,et al.  The mean value of a fuzzy number , 1987 .

[29]  Pandian Vasant,et al.  Soft-sensing of level of satisfaction in TOC product-mix decision heuristic using robust fuzzy-LP , 2007, Eur. J. Oper. Res..

[30]  Kin Keung Lai,et al.  A class of linear interval programming problems and its application to portfolio selection , 2002, IEEE Trans. Fuzzy Syst..

[31]  Weiguo Zhang,et al.  Using Fuzzy Possibilistic Mean and Variance in Portfolio Selection Model , 2005, CIS.

[32]  Lijian Chen,et al.  Mathematical programming models for revenue management under customer choice , 2010, Eur. J. Oper. Res..