Evolution of Dust in Primordial Supernova Remnants: Can Dust Grains Formed in the Ejecta Survive and Be Injected into the Early Interstellar Medium?

We investigate the evolution of dust that formed at Population III supernova (SN) explosions and its processing through the collisions with the reverse shocks resulting from the interaction of the SN ejecta with the ambient medium. In particular, we investigate the transport of the shocked dust within the SNR and its effect on the chemical composition, the size distribution, and the total mass of dust surviving in SNRs. We find that the evolution of the reverse shock, and hence its effect on the processing of the dust, depends on the thickness of the envelope retained by the progenitor star. Furthermore, the transport and survival of the dust grains depend on their initial radius, aini, and composition: for Type II SNRs expanding into the ISM with a density of nH,0 = 1 cm-3, small grains with aini ≲ 0.05 μm are completely destroyed by sputtering in the postshock flow, while grains with aini = 0.05-0.2 μm are trapped into the dense shell behind the forward shock. Very large grains of aini ≳ 0.2 μm are ejected into the ISM without decreasing their sizes significantly. We find that the total mass fraction of dust that is destroyed by the reverse shock ranges from 0.2 to 1.0, depending on the energy of the explosion and the density of the ambient ISM. The results of our calculations have significant impact on the abundance pattern of the second-generation stars that form in the dense shell of primordial SNRs.

[1]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[2]  S. Bianchi,et al.  Dust formation and survival in supernova ejecta , 2007, 0704.0586.

[3]  T. Shigeyama,et al.  The Origin of Carbon Enhancement and the Initial Mass Function of Extremely Metal-poor Stars in the Galactic Halo , 2006, astro-ph/0610670.

[4]  J. Rho,et al.  Spitzer IRAC Images and Sample Spectra of Cassiopeia A’s Explosion , 2006, astro-ph/0610838.

[5]  S. Owocki,et al.  On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.

[6]  A. Habe,et al.  Dust Destruction in the High-Velocity Shocks Driven by Supernovae in the Early Universe , 2006, astro-ph/0605193.

[7]  O. Krause,et al.  Spitzer Observations of High-Redshift QSOs , 2006, astro-ph/0604347.

[8]  K. Omukai,et al.  Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.

[9]  C. Carilli,et al.  350 μm Dust Emission from High-Redshift Quasars , 2006, astro-ph/0603121.

[10]  Benedict F. Voit,et al.  Constraints on the Progenitor of Cassiopeia A , 2005, astro-ph/0511806.

[11]  B. Nath,et al.  The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation , 2005, astro-ph/0508163.

[12]  K. Nomoto,et al.  The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.

[13]  T. Beers,et al.  Nucleosynthetic signatures of the first stars , 2005, Nature.

[14]  K. Omukai,et al.  Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.

[15]  T. Ishii,et al.  Extinction curves expected in young galaxies , 2005, astro-ph/0501158.

[16]  F. Nakamura,et al.  Low-Mass Star Formation Triggered by Supernovae in Primordial Clouds , 2004, astro-ph/0412282.

[17]  K. Nomoto,et al.  Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .

[18]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[19]  N. Yoshida,et al.  The Structure and Evolution of Early Cosmological H II Regions , 2004, astro-ph/0406280.

[20]  Edinburgh,et al.  Submillimetre observations of z > 6 quasars , 2004, astro-ph/0405177.

[21]  O. Krause,et al.  Imaging of the Supernova Remnant Cassiopeia A with the Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[22]  S. Cazaux,et al.  Molecular Hydrogen Formation on Dust Grains in the High-Redshift Universe , 2004 .

[23]  M. Machida,et al.  Is HE 0107–5240 A Primordial Star? The Characteristics of Extremely Metal-Poor Carbon-Rich Stars , 2004, astro-ph/0402589.

[24]  F. Mannucci,et al.  Extreme gas properties in the most distant quasars , 2003, astro-ph/0312402.

[25]  T. Beers,et al.  HE 0107–5240, a Chemically Ancient Star. I. A Detailed Abundance Analysis , 2003, astro-ph/0311173.

[26]  R. Salvaterra,et al.  Dust formation in very massive primordial supernovae , 2003, astro-ph/0307087.

[27]  A. Karimi,et al.  Master‟s thesis , 2011 .

[28]  Edinburgh,et al.  Quasars as probes of the submillimetre cosmos at z > 5 — I. Preliminary SCUBA photometry , 2003, astro-ph/0308132.

[29]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[30]  Xiaohui Fan,et al.  Dust emission from the most distant quasars , 2003, astro-ph/0305116.

[31]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[32]  T. Shigeyama,et al.  Excavation of the First Stars , 2003, astro-ph/0302316.

[33]  T. Beers,et al.  A stellar relic from the early Milky Way , 2002, Nature.

[34]  A. Ferrara,et al.  Effects of dust grains on early galaxy evolution , 2002, astro-ph/0209034.

[35]  D. Liedahl,et al.  Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.

[36]  P. Coppi,et al.  The Fragmentation of Pre-enriched Primordial Objects , 2001, astro-ph/0104271.

[37]  P. Lagage,et al.  Cassiopeia A dust composition and heating , 2001 .

[38]  K. Nomoto,et al.  Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.

[39]  S. Woosley,et al.  On the Stability of Very Massive Primordial Stars , 2000, astro-ph/0009410.

[40]  P. Ferrara Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.

[41]  Nasa Gsfc,et al.  Newly Synthesized Elements and Pristine Dust in the Cassiopeia A Supernova Remnant , 1999, astro-ph/9901042.

[42]  C. McKee,et al.  Evolution of Nonradiative Supernova Remnants , 1996 .

[43]  M. Dopita,et al.  Cooling functions for low-density astrophysical plasmas , 1993 .

[44]  R. Arendt,et al.  Dust-gas interactions and the infrared emission from hot astrophysical plasmas , 1992 .

[45]  K. Nomoto,et al.  Formation of dust grains in the ejecta of SN 1987A. II. , 1989 .

[46]  D. Hollenbach,et al.  The structure of the time-dependent interstellar shocks and grain destruction in the interstellar medium , 1987 .

[47]  E. Dwek,et al.  Physical processes and infrared emission from the Cassiopeia A supernova remnant , 1987 .

[48]  E. Salpeter,et al.  On the physics of dust grains in hot gas. , 1979 .

[49]  Barham W. Smith,et al.  Soft X-ray spectrum of a hot plasma. , 1977 .