Evolution of Dust in Primordial Supernova Remnants: Can Dust Grains Formed in the Ejecta Survive and Be Injected into the Early Interstellar Medium?
暂无分享,去创建一个
[1] E. Dwek,et al. The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.
[2] S. Bianchi,et al. Dust formation and survival in supernova ejecta , 2007, 0704.0586.
[3] T. Shigeyama,et al. The Origin of Carbon Enhancement and the Initial Mass Function of Extremely Metal-poor Stars in the Galactic Halo , 2006, astro-ph/0610670.
[4] J. Rho,et al. Spitzer IRAC Images and Sample Spectra of Cassiopeia A’s Explosion , 2006, astro-ph/0610838.
[5] S. Owocki,et al. On the Role of Continuum-driven Eruptions in the Evolution of Very Massive Stars and Population III Stars , 2006, astro-ph/0606174.
[6] A. Habe,et al. Dust Destruction in the High-Velocity Shocks Driven by Supernovae in the Early Universe , 2006, astro-ph/0605193.
[7] O. Krause,et al. Spitzer Observations of High-Redshift QSOs , 2006, astro-ph/0604347.
[8] K. Omukai,et al. Fragmentation of star-forming clouds enriched with the first dust , 2006, astro-ph/0603766.
[9] C. Carilli,et al. 350 μm Dust Emission from High-Redshift Quasars , 2006, astro-ph/0603121.
[10] Benedict F. Voit,et al. Constraints on the Progenitor of Cassiopeia A , 2005, astro-ph/0511806.
[11] B. Nath,et al. The Radiative Transport of Dust in Primordial Galaxies and Second-Generation Star Formation , 2005, astro-ph/0508163.
[12] K. Nomoto,et al. The First Chemical Enrichment in the Universe and the Formation of Hyper Metal-Poor Stars , 2005, Science.
[13] T. Beers,et al. Nucleosynthetic signatures of the first stars , 2005, Nature.
[14] K. Omukai,et al. Thermal and Fragmentation Properties of Star-forming Clouds in Low-Metallicity Environments , 2005, astro-ph/0503010.
[15] T. Ishii,et al. Extinction curves expected in young galaxies , 2005, astro-ph/0501158.
[16] F. Nakamura,et al. Low-Mass Star Formation Triggered by Supernovae in Primordial Clouds , 2004, astro-ph/0412282.
[17] K. Nomoto,et al. Submitted to the Astrophysical Journal on July 13, 2003 Variations in the Abundance Pattern of Extremely Metal-poor Stars and Nucleosynthesis in Population III Supernovae , 2003 .
[18] E. Oliva,et al. A supernova origin for dust in a high-redshift quasar , 2004, Nature.
[19] N. Yoshida,et al. The Structure and Evolution of Early Cosmological H II Regions , 2004, astro-ph/0406280.
[20] Edinburgh,et al. Submillimetre observations of z > 6 quasars , 2004, astro-ph/0405177.
[21] O. Krause,et al. Imaging of the Supernova Remnant Cassiopeia A with the Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .
[22] S. Cazaux,et al. Molecular Hydrogen Formation on Dust Grains in the High-Redshift Universe , 2004 .
[23] M. Machida,et al. Is HE 0107–5240 A Primordial Star? The Characteristics of Extremely Metal-Poor Carbon-Rich Stars , 2004, astro-ph/0402589.
[24] F. Mannucci,et al. Extreme gas properties in the most distant quasars , 2003, astro-ph/0312402.
[25] T. Beers,et al. HE 0107–5240, a Chemically Ancient Star. I. A Detailed Abundance Analysis , 2003, astro-ph/0311173.
[26] R. Salvaterra,et al. Dust formation in very massive primordial supernovae , 2003, astro-ph/0307087.
[27] A. Karimi,et al. Master‟s thesis , 2011 .
[28] Edinburgh,et al. Quasars as probes of the submillimetre cosmos at z > 5 — I. Preliminary SCUBA photometry , 2003, astro-ph/0308132.
[29] D. O. Astronomy,et al. Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.
[30] Xiaohui Fan,et al. Dust emission from the most distant quasars , 2003, astro-ph/0305116.
[31] M. Edmunds,et al. Dust formation in early galaxies , 2003, astro-ph/0302566.
[32] T. Shigeyama,et al. Excavation of the First Stars , 2003, astro-ph/0302316.
[33] T. Beers,et al. A stellar relic from the early Milky Way , 2002, Nature.
[34] A. Ferrara,et al. Effects of dust grains on early galaxy evolution , 2002, astro-ph/0209034.
[35] D. Liedahl,et al. Collisional Plasma Models with APEC/APED: Emission-Line Diagnostics of Hydrogen-like and Helium-like Ions , 2001, astro-ph/0106478.
[36] P. Coppi,et al. The Fragmentation of Pre-enriched Primordial Objects , 2001, astro-ph/0104271.
[37] P. Lagage,et al. Cassiopeia A dust composition and heating , 2001 .
[38] K. Nomoto,et al. Nucleosynthesis of Zinc and Iron Peak Elements in Population III Type II Supernovae: Comparison with Abundances of Very Metal Poor Halo Stars , 2001, astro-ph/0103241.
[39] S. Woosley,et al. On the Stability of Very Massive Primordial Stars , 2000, astro-ph/0009410.
[40] P. Ferrara. Dust Formation in Primordial Type II Supernovae , 2000, astro-ph/0009176.
[41] Nasa Gsfc,et al. Newly Synthesized Elements and Pristine Dust in the Cassiopeia A Supernova Remnant , 1999, astro-ph/9901042.
[42] C. McKee,et al. Evolution of Nonradiative Supernova Remnants , 1996 .
[43] M. Dopita,et al. Cooling functions for low-density astrophysical plasmas , 1993 .
[44] R. Arendt,et al. Dust-gas interactions and the infrared emission from hot astrophysical plasmas , 1992 .
[45] K. Nomoto,et al. Formation of dust grains in the ejecta of SN 1987A. II. , 1989 .
[46] D. Hollenbach,et al. The structure of the time-dependent interstellar shocks and grain destruction in the interstellar medium , 1987 .
[47] E. Dwek,et al. Physical processes and infrared emission from the Cassiopeia A supernova remnant , 1987 .
[48] E. Salpeter,et al. On the physics of dust grains in hot gas. , 1979 .
[49] Barham W. Smith,et al. Soft X-ray spectrum of a hot plasma. , 1977 .