Entanglement in spin chains and lattices with long-range Ising-type interactions.

We consider N initially disentangled spins, embedded in a ring or d-dimensional lattice of arbitrary geometry, which interact via some long-range Ising-type interaction. We investigate relations between entanglement properties of the resulting states and the distance dependence of the interaction in the limit N-->infinity. We provide a sufficient condition when bipartite entanglement between blocks of L neighboring spins and the remaining system saturates and determine S(L) analytically for special configurations. We find an unbounded increase of S(L) as well as diverging correlation and entanglement length under certain circumstances. For arbitrarily large N, we can efficiently calculate all quantities associated with reduced density operators of up to ten particles.

[1]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[2]  J. Ignacio Cirac,et al.  Simulation of quantum dynamics with quantum optical systems , 2003, Quantum Inf. Comput..

[3]  F. Verstraete,et al.  Valence-bond states for quantum computation , 2003, quant-ph/0311130.

[4]  Gavin K. Brennen An observable measure of entanglement for pure states of multi-qubit systems , 2003, Quantum Inf. Comput..

[5]  G. Vidal,et al.  Entanglement in quantum critical phenomena. , 2002, Physical review letters.

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  M. Nielsen,et al.  Entanglement in a simple quantum phase transition , 2002, quant-ph/0202162.

[8]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[9]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[10]  A. Osterloh,et al.  Scaling of entanglement close to a quantum phase transition , 2002, Nature.

[11]  D. Meyer,et al.  Global entanglement in multiparticle systems , 2001, quant-ph/0108104.

[12]  J I Cirac,et al.  Entanglement versus correlations in spin systems. , 2004, Physical review letters.

[13]  Martin B Plenio,et al.  Three-spin interactions in optical lattices and criticality in cluster Hamiltonians. , 2004, Physical review letters.

[14]  J Eisert,et al.  Entropy, entanglement, and area: analytical results for harmonic lattice systems. , 2005, Physical review letters.

[15]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[16]  J I Cirac,et al.  Diverging entanglement length in gapped quantum spin systems. , 2004, Physical review letters.

[17]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[18]  V. Roychowdhury,et al.  Entanglement in a valence-bond solid state. , 2004, Physical review letters.

[19]  Michael A. Nielsen,et al.  Majorization and the interconversion of bipartite states , 2001, Quantum Inf. Comput..

[20]  José Ignacio Latorre,et al.  Ground state entanglement in quantum spin chains , 2004, Quantum Inf. Comput..

[21]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[22]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[23]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[24]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.