Topology optimization of Stokes flow using an implicit coupled level set method
暂无分享,去创建一个
Xinqiang Qin | Xianbao Duan | X. Qin | Xianbao Duan | Feifei Li | Feifei Li
[1] Steffen Basting,et al. A hybrid level set/front tracking approach for finite element simulations of two-phase flows , 2014, J. Comput. Appl. Math..
[2] James K. Guest,et al. Level set topology optimization of fluids in Stokes flow , 2009 .
[3] Xianbao Duan,et al. Shape-topology optimization for Navier-Stokes problem using variational level set method , 2008 .
[4] T. Barbu. Robust Contour Tracking Model Using a Variational Level-Set Algorithm , 2014 .
[5] Xin-Qiang Qin,et al. Shape identification for Navier-Stokes problem using shape sensitivity analysis and level set method , 2014, Appl. Math. Comput..
[6] O. Pironneau. On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.
[7] Qing Li,et al. Evolutionary topology and shape design for general physical field problems , 2000 .
[8] G. Allaire,et al. Structural optimization using sensitivity analysis and a level-set method , 2004 .
[9] M. Bendsøe,et al. Generating optimal topologies in structural design using a homogenization method , 1988 .
[10] M. Bendsøe. Optimal shape design as a material distribution problem , 1989 .
[11] Zhenyu Liu,et al. Combination of topology optimization and optimal control method , 2014, J. Comput. Phys..
[12] G. Allaire,et al. A level-set method for shape optimization , 2002 .
[13] James A. Sethian,et al. Level Set Methods and Fast Marching Methods , 1999 .
[14] M. Bendsøe,et al. Material interpolation schemes in topology optimization , 1999 .
[15] Heiko Andrä,et al. A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..
[16] G. Rozvany. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .
[17] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[18] Maatoug Hassine,et al. Optimal shape design for fluid flow using topological perturbation technique , 2009 .
[19] J. Sethian,et al. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .
[20] James K. Guest,et al. Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .
[21] O. Sigmund,et al. Topology optimization of channel flow problems , 2005 .
[22] Xianbao Duan,et al. Optimal shape control of fluid flow using variational level set method , 2008 .
[23] Chuanjiang He,et al. A convex variational level set model for image segmentation , 2015, Signal Process..
[24] L. H. Olesen,et al. A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.
[25] K. Maute,et al. Topology optimization of flow domains using the lattice Boltzmann method , 2007 .
[26] Zhenyu Liu,et al. Topology optimization of steady Navier–Stokes flow with body force , 2013 .
[27] Jan Sokołowski,et al. Compressible Navier-Stokes Equations: Theory and Shape Optimization , 2012 .
[28] M. Burger,et al. Incorporating topological derivatives into level set methods , 2004 .
[29] Xiaoming Wang,et al. A level set method for structural topology optimization , 2003 .
[30] Qing Li,et al. A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..
[31] Ole Sigmund,et al. Topology optimization of large scale stokes flow problems , 2008 .
[32] J. Petersson,et al. Topology optimization of fluids in Stokes flow , 2003 .
[33] D. Tortorelli,et al. Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .
[34] J. Simon. Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .