Topology optimization of Stokes flow using an implicit coupled level set method

Abstract We present a novel algorithm for the topology optimization of the Stokes problem. The level set method is implicitly coupled with the material distribution information to obtain the interface of the fluid flow. The design objective is to minimize the dissipated power in the fluid, subject to a fluid volume constraint. The proposed method takes full advantage of the features of the fluid flow. Furthermore, due to the level set method, this method is efficient and the boundaries can be described accurately. Two benchmark test examples are presented to illustrate that this new method is computational efficiency, robust, accurate and consistent with the results obtained in the context of shape and topology optimization of the fluids.

[1]  Steffen Basting,et al.  A hybrid level set/front tracking approach for finite element simulations of two-phase flows , 2014, J. Comput. Appl. Math..

[2]  James K. Guest,et al.  Level set topology optimization of fluids in Stokes flow , 2009 .

[3]  Xianbao Duan,et al.  Shape-topology optimization for Navier-Stokes problem using variational level set method , 2008 .

[4]  T. Barbu Robust Contour Tracking Model Using a Variational Level-Set Algorithm , 2014 .

[5]  Xin-Qiang Qin,et al.  Shape identification for Navier-Stokes problem using shape sensitivity analysis and level set method , 2014, Appl. Math. Comput..

[6]  O. Pironneau On optimum profiles in Stokes flow , 1973, Journal of Fluid Mechanics.

[7]  Qing Li,et al.  Evolutionary topology and shape design for general physical field problems , 2000 .

[8]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[9]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[10]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[11]  Zhenyu Liu,et al.  Combination of topology optimization and optimal control method , 2014, J. Comput. Phys..

[12]  G. Allaire,et al.  A level-set method for shape optimization , 2002 .

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[14]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[15]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[16]  G. Rozvany Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics , 2001 .

[17]  G. Allaire,et al.  Shape optimization by the homogenization method , 1997 .

[18]  Maatoug Hassine,et al.  Optimal shape design for fluid flow using topological perturbation technique , 2009 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  James K. Guest,et al.  Topology optimization of creeping fluid flows using a Darcy–Stokes finite element , 2006 .

[21]  O. Sigmund,et al.  Topology optimization of channel flow problems , 2005 .

[22]  Xianbao Duan,et al.  Optimal shape control of fluid flow using variational level set method , 2008 .

[23]  Chuanjiang He,et al.  A convex variational level set model for image segmentation , 2015, Signal Process..

[24]  L. H. Olesen,et al.  A high‐level programming‐language implementation of topology optimization applied to steady‐state Navier–Stokes flow , 2004, physics/0410086.

[25]  K. Maute,et al.  Topology optimization of flow domains using the lattice Boltzmann method , 2007 .

[26]  Zhenyu Liu,et al.  Topology optimization of steady Navier–Stokes flow with body force , 2013 .

[27]  Jan Sokołowski,et al.  Compressible Navier-Stokes Equations: Theory and Shape Optimization , 2012 .

[28]  M. Burger,et al.  Incorporating topological derivatives into level set methods , 2004 .

[29]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[30]  Qing Li,et al.  A variational level set method for the topology optimization of steady-state Navier-Stokes flow , 2008, J. Comput. Phys..

[31]  Ole Sigmund,et al.  Topology optimization of large scale stokes flow problems , 2008 .

[32]  J. Petersson,et al.  Topology optimization of fluids in Stokes flow , 2003 .

[33]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[34]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .