Charge-conserving grid based methods for the Vlasov–Maxwell equations

Abstract In this article, we introduce numerical schemes for the Vlasov–Maxwell equations relying on different kinds of grid-based Vlasov solvers, as opposite to PIC schemes, which enforce a discrete continuity equation. The idea underlying these schemes relies on a time-splitting scheme between configuration space and velocity space for the Vlasov equation and on the computation of the discrete current in a form that is compatible with the discrete Maxwell solver.

[1]  Claus-Dieter Munz,et al.  Maxwell's equations when the charge conservation is not satisfied , 1999 .

[2]  B. M. Marder,et al.  A method for incorporating Gauss' lasw into electromagnetic pic codes , 1987 .

[3]  S. Hirstoaga,et al.  Semi-Lagrangian simulations on polar grids: from diocotron instability to ITG turbulence , 2014 .

[4]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[5]  John D. Villasenor,et al.  Rigorous charge conservation for local electromagnetic field solvers , 1992 .

[6]  T. Esirkepov,et al.  Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor , 2001 .

[7]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[8]  Eric Sonnendrücker,et al.  A forward semi-Lagrangian method for the numerical solution of the Vlasov equation , 2008, Comput. Phys. Commun..

[9]  Nicolas Crouseilles,et al.  A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations , 2011 .

[10]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[11]  F. Bouchut On the discrete conservation of the Gauss–Poisson equation of plasma physics , 1998 .

[12]  T. D. Arber,et al.  VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system , 2009, J. Comput. Phys..

[13]  Hiroshi Matsumoto,et al.  A new charge conservation method in electromagnetic particle-in-cell simulations , 2003 .

[14]  R. Barthelmé,et al.  Numerical charge conservation in Particle-In-Cell codes , 2005 .

[15]  Alain Ghizzo,et al.  Parallelization of semi-Lagrangian Vlasov codes , 1999, Journal of Plasma Physics.

[16]  Régine Barthelmé Le problème de conservation de la charge dans le couplage des équations de Vlasov et de Maxwell , 2005 .