Fatigue behaviour and fracture mechanism of cryogenically treated En 353 steel

[1]  A. Rajadurai,et al.  Microstructural study of cryogenically treated En 31 bearing steel , 2009 .

[2]  Martin Pugh,et al.  Effect of cryogenic treatment on the mechanical properties of 4340 steel , 2007 .

[3]  T. Jayakumar,et al.  Fatigue life extension of notches in AISI 304L weldments using deep cryogenic treatment , 2005 .

[4]  G. Mesmacque,et al.  High cycle fatigue, low cycle fatigue and failure modes of a carburized steel , 2004 .

[5]  D. R. G. Achar,et al.  Fatigue life improvement of AISI 304L cruciform welded joints by cryogenic treatment , 2003 .

[6]  L. Canale,et al.  Influence of retained austenite on short fatigue crack growth and wear resistance of case carburized steel , 1999 .

[7]  Mehmet Demirkol,et al.  Effect of case depth on fatigue performance of AISI 8620 carburized steel , 1999 .

[8]  M. Ma,et al.  The effect of austenite on low cycle fatigue in three-phase steel , 1997 .

[9]  C. Subramanian,et al.  Bending fatigue and contact fatigue characteristics of carburized gears , 1995 .

[10]  Zheng Mingxin,et al.  Effect of retained austenite on rolling element fatigue and its mechanism , 1985 .

[11]  Haohuai Liu,et al.  Effects of deep cryogenic treatment on property of 3Cr13Mo1V1.5 high chromium cast iron , 2007 .

[12]  P. Yen,et al.  FORMATION OF FINE ETA CARBIDES IN SPECIAL CRYOGENIC AND TEMPERING PROCESS KEY TO IMPROVED PROPERTIES OF ALLOY STEELS , 1997 .

[13]  G. Krauss Microstructure and performance of carburized steel. III: Austenite & fatigue , 1995 .