CMOS THz Generator With Frequency Selective Negative Resistance Tank

This paper reports a CMOS terahertz oscillator with a novel frequency selective negative resistance (FSNR) tank to boost its operating frequency. The demonstrated oscillator can operate at a fundamental frequency of about 0.22 THz, exceeding the CMOS device cutoff frequency of fT. The proposed architecture suppresses undesired 2nd and odd harmonics and boosts the fourth-order harmonic (0.87 THz), which radiates through an on-chip patch antenna. The THz oscillator's output spectrum is profiled by using a Michelson interferometer. The oscillator circuit consumes 12 mA from a 1.4 V supply and occupies a 0.045 mm2 die area in a 65 nm CMOS technology.

[1]  Mau-Chung Frank Chang,et al.  Generating terahertz signals in 65nm CMOS with negative-resistance resonator boosting and selective harmonic suppression , 2010, 2010 Symposium on VLSI Circuits.

[2]  Dajiang Yang,et al.  A 65-nm High-Frequency Low-Noise CMOS-Based RF SoC Technology , 2010, IEEE Transactions on Electron Devices.

[3]  Xiang Zhang,et al.  Terahertz beam generation by femtosecond optical pulses in electro‐optic materials , 1992 .

[4]  Ming Hu,et al.  InP MMIC chip set for power sources covering 86-170 GHz , 2001 .

[5]  Lorene Samoska,et al.  High-gain 150-215-GHz MMIC amplifier with integral waveguide transitions , 1999 .

[6]  C. L. Dennis,et al.  Photomixing up to 3.8 THz in low‐temperature‐grown GaAs , 1995 .

[7]  X C Zhang,et al.  Terahertz wave imaging: horizons and hurdles. , 2002, Physics in medicine and biology.

[8]  A. Hajimiri,et al.  A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon , 2006, 2006 IEEE International Solid State Circuits Conference - Digest of Technical Papers.

[9]  Yan Zhao,et al.  A 820GHz SiGe chipset for terahertz active imaging applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[10]  Ruonan Han,et al.  Progress and Challenges Towards Terahertz CMOS Integrated Circuits , 2010, IEEE Journal of Solid-State Circuits.

[11]  M. Hella,et al.  A low-power dual-band oscillator based on band-limited negative resistance , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[12]  Ehsan Afshari,et al.  High Power Terahertz and Millimeter-Wave Oscillator Design: A Systematic Approach , 2011, IEEE Journal of Solid-State Circuits.

[13]  P. Bai,et al.  A 65nm CMOS SOC Technology Featuring Strained Silicon Transistors for RF Applications , 2006, 2006 International Electron Devices Meeting.

[14]  Chenming Hu,et al.  A simple subcircuit extension of the BSIM3v3 model for CMOS RF design , 2000, IEEE Journal of Solid-State Circuits.

[15]  P. Siegel Terahertz Technology , 2001 .

[16]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[17]  Behzad Razavi,et al.  A 300-GHz Fundamental Oscillator in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[18]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[19]  Heribert Eisele,et al.  Two-terminal millimeter-wave sources , 1997 .

[20]  Mau-Chung Frank Chang,et al.  Terahertz CMOS Frequency Generator Using Linear Superposition Technique , 2008, IEEE Journal of Solid-State Circuits.