Neutron Imaging Methods and Applications

Neutron imaging (NI) techniques based on direct transmission through macroscopic samples have enjoyed tremendous progress in recent years due to advances in digital imaging systems and new dedicated installations. Because of its high performance in terms of image frequency, dynamic range, and methodological variability, NI is now an option for research in many different fields.

[1]  E. Lehmann,et al.  Post-irradiation analysis of SINQ target rods by thermal neutron radiography , 2006 .

[2]  O. Bunk,et al.  Neutron phase imaging and tomography. , 2006, Physical review letters.

[3]  M. Grimes,et al.  Progress with vertex detector sensors for the International Linear Collider , 2007 .

[4]  E. Lehmann,et al.  Dy-IP characterization and its application for experimental neutron radiography tests under realistic conditions , 2005 .

[5]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries during charge/discharge cycling , 2001 .

[6]  Eberhard Lehmann,et al.  Neutron imaging—detector options and practical results , 2004 .

[7]  T. Holý,et al.  Performance of a pixel detector suited for slow neutrons , 2005 .

[8]  S. A. Werner,et al.  Imaging: Phase radiography with neutrons , 2000, Nature.

[9]  Eberhard Lehmann,et al.  Energy-selective neutron transmission imaging at a pulsed source , 2007 .

[10]  Bjoern Winkler,et al.  Applications of Neutron Radiography and Neutron Tomography , 2006 .

[11]  E. Lehmann,et al.  Comparison of X-ray and neutron tomography investigations of geological materials , 2005, IEEE Transactions on Nuclear Science.

[12]  Pierre Boillat,et al.  The micro-setup for neutron imaging: A major step forward to improve the spatial resolution , 2007 .

[13]  N. Niimura,et al.  Development of a new type of imaging plate for neutron detection , 1999 .

[14]  M. Stampanoni,et al.  Towards nanotomography with asymmetrically cut crystals , 2005 .

[15]  N. Kardjilov,et al.  Wavelength tunable device for neutron radiography and tomography , 2006 .

[16]  Alexander Wokaun,et al.  An on-line study of fuel cell behavior by thermal neutrons , 2005 .

[17]  A. Gerdes Transport und chemische Reaktion siliciumorganischer Verbindungen in der Betonrandzone , 2001 .

[18]  H. Flühler,et al.  Dilution of non-reactive tracers in variably saturated sandy structures , 2001 .

[19]  N. Kardjilov,et al.  Scattering corrections in neutron radiography using point scattered functions , 2005 .

[20]  A. Carminati,et al.  Investigation of water imbibition in porous stone by thermal neutron radiography , 2006 .

[21]  W. Carlson Three-dimensional imaging of earth and planetary materials , 2006 .

[22]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[23]  E. Lehmann,et al.  Design of a new CCD-camera neutron radiography detector , 1997 .

[24]  Burkhard Schillinger,et al.  Construction and assembly of the neutron radiography and tomography facility ANTARES at FRM II , 2005 .

[25]  G. S. Bauer,et al.  Physics and technology of spallation neutron sources , 2001 .

[26]  H. Flühler,et al.  Infiltration through series of soil aggregates: Neutron radiography and modeling , 2007 .

[27]  H. Flühler,et al.  Mapping the 3D water dynamics in heterogeneous sands using thermal neutrons , 2007 .