Ultrafast Coherent THz Lattice Dynamics Coupled to Spins in the van der Waals Antiferromagnet FePS3

Coherent THz optical lattice and hybridized phonon–magnon modes are triggered by femtosecond laser pulses in the antiferromagnetic van der Waals semiconductor FePS3. The laser‐driven lattice and spin dynamics are investigated in a bulk crystal as well as in a 380 nm‐thick exfoliated flake as a function of the excitation photon energy, sample temperature and applied magnetic field. The pump‐probe magneto‐optical measurements reveal that the amplitude of a coherent phonon mode oscillating at 3.2 THz decreases as the sample is heated up to the Néel temperature. This signal eventually vanishes as the phase transition to the paramagnetic phase occurs, thus revealing its connection to the long‐range magnetic order. In the presence of an external magnetic field, the optically triggered 3.2 THz phonon hybridizes with a magnon mode, which is utilized to excite the hybridized phonon–magnon mode optically. These findings open a pathway toward the optical control of coherent THz photo–magnonic dynamics in a van der Waals antiferromagnet, which can be scaled down to the 2D limit.

[1]  A. Fert,et al.  Two-dimensional materials prospects for non-volatile spintronic memories , 2022, Nature.

[2]  E. Coronado,et al.  Probing the Spin Dimensionality in Single‐Layer CrSBr Van Der Waals Heterostructures by Magneto‐Transport Measurements , 2022, Advanced materials.

[3]  Jun Zhang,et al.  Magneto-Raman Study of Magnon-Phonon Coupling in Two-Dimensional Ising Antiferromagnetic FePS3. , 2022, The journal of physical chemistry letters.

[4]  T. Bendikov,et al.  Spectroscopy and Structural Investigation of Iron Phosphorus Trisulfide—FePS3 , 2021, Advanced Optical Materials.

[5]  P. Padmanabhan,et al.  Coherent helicity-dependent spin-phonon oscillations in the ferromagnetic van der Waals crystal CrI3 , 2020, Nature Communications.

[6]  J. Simpson,et al.  Magnon-phonon hybridization in 2D antiferromagnet MnPSe3 , 2021, Science advances.

[7]  M. Cinchetti,et al.  Positive Magnetoresistance and Chiral Anomaly in Exfoliated Type-II Weyl Semimetal Td-WTe2 , 2021, Nanomaterials.

[8]  Xiaodong Xu,et al.  Observation of Giant Optical Linear Dichroism in a Zigzag Antiferromagnet FePS3. , 2021, Nano letters.

[9]  J. Shan,et al.  Spin Dynamics Slowdown near the Antiferromagnetic Critical Point in Atomically Thin FePS3. , 2021, Nano letters.

[10]  José J. Baldoví,et al.  Ultra-broad spectral photo-response in FePS3 air-stable devices , 2021, npj 2D Materials and Applications.

[11]  A. Boris,et al.  Ultrafast phononic switching of magnetization , 2020, Nature Physics.

[12]  B. Ivanov,et al.  Controlling the anisotropy of a van der Waals antiferromagnet with light , 2020, Science Advances.

[13]  M. Cinchetti,et al.  Wide spectral range ultrafast pump-probe magneto-optical spectrometer at low temperature, high-magnetic and electric fields. , 2020, The Review of scientific instruments.

[14]  A. Cavalleri,et al.  Author Correction: Polarizing an antiferromagnet by optical engineering of the crystal field , 2020, Nature Physics.

[15]  A. Morpurgo,et al.  Spin-flop transition in atomically thin MnPS$_3$ crystals. , 2019, 1910.13287.

[16]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[17]  A. Morpurgo,et al.  Probing magnetism in 2D materials at the nanoscale with single-spin microscopy , 2019, Science.

[18]  Soo Yeon Lim,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[19]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[20]  M. Fiebig,et al.  Antiferromagnetic opto-spintronics , 2017, 1705.10600.

[21]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[22]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[23]  T. Rasing,et al.  Femtosecond optomagnetism in dielectric antiferromagnets , 2017 .

[24]  T. Jungwirth,et al.  Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet , 2016, Nature Photonics.

[25]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[26]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[27]  Je-Guen Park Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[28]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[29]  A. Cavalleri,et al.  An effective magnetic field from optically driven phonons , 2015, Nature Physics.

[30]  S. D. Conte,et al.  Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons , 2015, Nature Communications.

[31]  D. Lynch,et al.  X-ray photoemission and optical spectra of NiPS3, FePS3 and ZnPS3 , 1982 .

[32]  G. Ouvrard,et al.  Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites , 1979 .