Generalized T-splines and VMCR T-meshes

Abstract The paper considers the extension of the T-spline approach to the Generalized B-splines (GB-splines), a relevant class of non-polynomial splines. The Generalized T-splines (GT-splines) are based both on the framework of classical polynomial T-splines and on the Trigonometric GT-splines (TGT-splines), a particular case of GT-splines. Our study of GT-splines introduces a class of T-meshes (named VMCR T-meshes) for which both the corresponding GT-splines and the corresponding polynomial T-splines are linearly independent. A practical characterization can be given for a sub-class of VMCR T-meshes, which we refer to as weakly dual-compatible T-meshes, which properly includes the class of dual-compatible (equivalently, analysis-suitable) T-meshes for an arbitrary (polynomial) order.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[3]  Marie-Laurence Mazure,et al.  Blossoms and Optimal Bases , 2004, Adv. Comput. Math..

[4]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[5]  Minoru Taya,et al.  Finite element analysis of superelastic, large deformation behavior of shape memory alloy helical springs , 2002 .

[6]  Dmitry Berdinsky,et al.  Trigonometric generalized T-splines , 2014 .

[7]  G. Sangalli,et al.  IsoGeometric Analysis using T-splines , 2012 .

[8]  Giancarlo Sangalli,et al.  ANALYSIS-SUITABLE T-SPLINES OF ARBITRARY DEGREE: DEFINITION, LINEAR INDEPENDENCE AND APPROXIMATION PROPERTIES , 2013 .

[9]  Marie-Laurence Mazure,et al.  How to build all Chebyshevian spline spaces good for geometric design? , 2011, Numerische Mathematik.

[10]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[11]  Y C Loo,et al.  Application of finite element method in dental implant research , 2009 .

[12]  Guozhao Wang,et al.  Unified and extended form of three types of splines , 2008 .

[13]  Marie-Laurence Mazure,et al.  On a general new class of quasi Chebyshevian splines , 2011, Numerical Algorithms.

[14]  Majid Hejazian,et al.  CFD Examination of Convective Heat Transfer and Pressure Drop in a Horizontal Helically Coiled Tube with CuO/Oil Base Nanofluid , 2014 .

[15]  L. Beirão da Veiga,et al.  Analysis-suitable T-splines of arbitrary degree : definition and properties , 2012 .

[16]  P. Sattayatham,et al.  GB-splines of arbitrary order , 1999 .

[17]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[18]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[19]  Tom Lyche,et al.  T-spline Simplication and Local Renement , 2004 .

[20]  Carla Manni,et al.  Generalized B-splines as a tool in Isogeometric Analysis , 2011 .

[21]  Salvador B. Rodriguez,et al.  Swirling jets for the mitigation of hot spots and thermal stratification in the VHTR lower plenum. , 2011 .

[22]  H. Iplikçioğlu,et al.  Force transmission of one- and two-piece morse-taper oral implants: a nonlinear finite element analysis. , 2004, Clinical oral implants research.

[23]  J. L. Henshall,et al.  A novel finite element model for helical springs , 2000 .

[24]  Guozhao Wang,et al.  NUAT B-spline curves , 2004, Comput. Aided Geom. Des..

[25]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[26]  Pawel Wozny Construction of dual B-spline functions , 2014, J. Comput. Appl. Math..

[27]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .